Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторна робота №11.doc
Скачиваний:
15
Добавлен:
30.05.2020
Размер:
407.04 Кб
Скачать

Практична робота № 11

Тема: Блочні шифри. Алгоритм DES

Мета: Навчитися використовувати алгоритм DES при шифруванні тексту.

Теоретичні відомості

Американський стандарт криптографічного захисту даних (Data Encryption Standard), прийнятий в 1978 році є типовим представником сімейства блочних шифрів. Цей шифр допускає ефективну апаратну та програмну реалізації, причому можливо досягнення швидкостей до декількох мегабайтів за секунду.

Алгоритм DES виконує шифрування 64-бітних блоків даних за допомогою 56 бітного ключа. Дешифрування в DES є оберненою операцією шифруванню і виконується шляхом повторення операцій шифрування в зворотній послідовності.

Процес шифрування полягає в початковій перестановці 64 бітів вхідного блоку, шістнадцяти циклах шифрування та зворотній перестановці бітів (рис. 1)

Необхідно звернути увагу на те, що всі таблиці алгоритму DES є стандартними і повинні включатися в реалізацію алгоритму в незмінному вигляді. Усі перестановки і коди в таблицях підібрані так, щоб зробити максимально важким процес зламування шляхом підбору ключа.

Рисунок 1 – Загальна схема процесу шифрування в алгоритмі DES

Розглянемо алгоритм докладніше. Припустимо, з файлу зчитано 64-бітний блок , який перетворюється за допомогою початкової перестановки IP (рис. 2) в 64-бітний блок .

Рисунок 2 – Матриця початкової перестановки

Після IP-перестановки 16 разів повторюється процедура шифрування блока за допомогою функції . Позначимо

– результат i-ї ітерації;

– перші (ліві) 32 біти блоку , ;

– останні (праві) 32 біти блоку , .

Таким чином,

.

Тоді результатом i-ї операції буде:

,

,

де

– операція додавання за модулем 2;

i-те перетворення ключа шифрування .

Функція виконує операції над значенням (результатом минулої операції) та поточним значенням 48-бітного ключа (з відокремленням зайвих бітів). До речі, після 16-ї ітерації ліва і права половини блока не міняються місцями (рис. 3). По закінченні шифрування виконується відновлення позицій бітів за допомогою матриці перестановок (рис. 4).

Розглянемо докладніше функцію .

Крок 1 На кожній ітерації масив розширюється до 48 бітів за допомогою таблиці розподілення бітів . Блок розбивається на вісім блоків по 4 біти (рис. 5).

Рисунок 3 – Загальна схема алгоритму шифрування DES

Шляхом копіювання крайніх елементів вісім 4-бітних блоки перетворюються у вісім 6-бітних блоків (рис. 6). Отриманий блок має 48 бітів.

Рисунок 4 – Матриця зворотної перестановки

Рисунок 5 – Розбиття на вісім блоків

Крок 2 Блок порозрядно сумують за модулем 2 з поточним значенням ключа , а потім розбивають на вісім 6-бітних блоки , тобто .

Крок 3 Кожен блок () подається на вхід підстановки S-бокс (рис 7). Індекс вказує, який з масивів S-боксу використовувати. Застосувавши операцію вибору до кожного із блоків , одержимо 32-бітний потік.

Рисунок 6 – Таблиця розподілення бітів

Відзначимо, що вибір елемента в масиві здійснюється досить оригінальним способом. Нехай на вхід подається 6-бітний блок , дві крайні позиції інтерпретуються як двійкове подання цілих чисел з набору {0, 1, 2, 3}.

Номер стовпця

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Номер рядка

0

14

4

13

1

2

15

11

8

3

10

6

12

5

9

0

7

S1

1

0

15

7

4

14

2

13

1

10

6

12

11

9

5

3

8

2

4

1

14

89

13

6

2

11

15

12

9

7

3

10

5

0

3

15

12

8

2

4

9

1

7

5

11

3

14

10

0

6

13

0

15

1

8

14

6

11

3

4

9

7

2

13

12

0

5

10

S2

1

3

13

4

7

15

2

8

14

12

0

1

10

6

9

11

5

2

0

14

7

11

10

4

13

1

5

8

12

6

9

3

2

15

3

13

8

10

1

3

15

4

2

11

6

7

12

0

5

14

9

0

10

0

9

14

6

3

15

5

1

13

12

7

11

4

2

8

S3

1

13

7

0

9

3

4

6

10

2

8

5

14

12

11

15

1

2

13

6

4

9

8

15

3

0

11

1

2

12

5

10

14

7

3

1

10

13

0

6

9

8

7

4

15

14

3

11

5

2

12

0

7

13

14

3

0

6

9

10

1

2

8

5

11

12

4

15

S4

1

13

8

11

5

6

15

0

3

4

7

2

12

1

10

14

9

2

10

6

9

0

12

11

7

13

15

1

3

14

5

2

8

4

3

3

15

0

6

10

1

13

8

9

4

5

11

12

7

2

14

0

2

12

4

1

7

10

11

6

8

5

3

15

13

0

14

9

S5

1

14

11

2

12

4

7

13

1

5

0

15

10

3

9

8

6

2

4

2

1

11

10

13

7

8

15

9

12

5

6

3

0

14

3

11

8

12

7

1

14

2

13

6

15

0

9

10

4

5

3

0

12

1

10

15

9

2

6

8

0

13

3

4

14

7

5

11

S6

1

10

15

4

2

7

12

9

5

6

1

13

14

0

11

3

8

2

9

14

15

5

2

8

12

3

7

0

4

10

1

13

11

6

3

4

3

2

12

9

5

15

10

11

14

1

7

6

0

8

13

0

4

11

2

14

15

0

8

13

3

12

9

7

5

10

6

1

S7

1

13

0

11

7

4

9

1

10

14

3

5

12

2

15

8

6

2

1

4

11

13

12

3

7

14

10

15

6

8

0

5

9

2

3

6

11

13

8

1

4

10

7

9

5

0

15

14

2

3

12

0

13

2

8

4

6

15

11

1

10

9

3

14

5

0

12

7

S8

1

1

15

13

8

10

3

7

4

12

5

6

11

0

14

9

2

2

7

11

4

1

9

12

14

2

0

6

10

13

15

3

5

8

3

2

1

14

7

4

10

8

13

15

12

9

0

3

5

6

11

Рисунок 7 – S-бокс

Ці числа визначають номер рядка (від 0 до 3) масиву . Чотири біти, що залишилися, інтерпретуються як двійкове подання цілих чисел з набору {0, 1, 2, … , 15} і використовуються для визначення стовпця (від 0 до 15) у масиві .

Таким чином, вхідний блок, наприклад, , відповідає десятковому числу 9, розміщеному в другому рядку та в третьому стовпці масиву , Число 9 у двійковому поданні являє собою 4-бітний блок (1001).

У результаті застосувавши до кожного з блоків ) операцію вибору в S-боксі, одержимо 32-бітний блок

.

Крок 4 Отриманий блок перетворюється за допомогою матриці перестановки (рис. 8).

Рисунок 8 – Матриця перестановки

Таким чином,

.