- •Лекция 1. Основные понятия
- •Лекция 2.
- •Формы задания Булевой функции
- •Числовая:
- •Графическая:
- •Лекция 3
- •Арифметико-логические устройства (арифметика, логика, сравнение)
- •3.11.1 Синтез комбинационных узлов
- •Тема 4. Схемотехника цифровых элементов Лекция 4
- •4.3. Асинхронные триггеры
- •4.4. Синхронные триггеры
- •Rs триггер с синхронизацией по уровню
- •Синхронный rs триггер с синхронизацией по фронту
- •4.6 Регистры и регистровые файлы
- •4.6.1 Регистры памяти
- •4.6.2 Сдвигающие регистры
- •4.6.3 Универсальные регистры
- •4.7 Счётчики
- •4.8 Распределители тактов
- •4.8.1 Распределители импульсов и распределители уровней
- •4.8.2 Кольцевой регистр сдвига
- •4.8.3 Счётчик Джонсона
- •Лекция 5
- •5.2 Абстрактный и структурный автоматы
- •5.3. Способы описания и задания автоматов
- •Операционные элементы
- •5.7. Граф - схемы алгоритмов (гса) и их разновидности. Способы задания гса, требования к ним
- •5.8. Абстрактный синтез микропрограммных управляющих автоматов Мили и Мура
- •5.8.1. Синтез автомата Мили
- •5.8.2. Синтез автомата Мура
- •5.9. Структурный синтез микропрограммных управляющих автоматов Мили и Мура
- •5.9.1. Структурный синтез автомата Мили
- •5.9.2. Структурный синтез автомата Мура
- •5.10. Синтез автомата Мура на базе регистра сдвига
5.10. Синтез автомата Мура на базе регистра сдвига
Кроме рассмотренного ранее канонического метода, существуют и другие методы синтеза управляющих автоматов, среди которых наиболее широко используется синтез на базе регистра сдвига. Этот метод позволяет при построении схемы отказаться от дешифратора, т.к. состояния кодируются унитарным кодом. В автомате количество элементов памяти выбирается равным количеству внутренних состояний. В каждый момент времени только один триггер находится в 1, остальные в 0. Обычно при синтезе на базе регистра сдвига используются D-триггеры. Очень эффективен данный метод для так называемых линейных микропрограмм, т.е. микропрограмм без ветвлений (отсутствует логические условия). Рассмотрим пример синтеза управляющего автомата Мура данным методом. Пусть закодированная ГСА микропрограммы имеет вид рис. 5.21.
Рис.5.21 Закодированная ГСА
Разметив данную ГСА для автомата Мура, получаем семь состояний. Следовательно число триггеров m=7. Выполним синтез с использованием D-триггеров. Закодируем состояния унитарным кодом: a1=1000000, a2=0100000,..., a7=0000001. Обратная структурная таблица переходов-выходов для данного автомата представлена в таблице 5.17
Таблица 5.17
-
am
Kam
as(y)
Kas
x
ФВ
а6
0000010
а1(-)
1000000
1
D1
а7
0000001
1
D1
а1
1000000
а2(y1 y2)
0100000
1
D2
а2
0100000
а3( y2)
0010000
1
D3
а3
0010000
а4(y3 y4)
0001000
1
D4
а4
0001000
а5( y2)
0000100
D5
а5
0000100
а6(y3)
0000010
1
D6
а4
0001000
а7(y4)
0000001
x
D7
На основании структурной таблицы записываем выражения для выходных сигналов yi и функций Di :
D1 = a6 + a7 y1 = a2
D2 = a1 y2 = a2 + a3 + a5
D3 = a2 y3 = a4 + a6
D4 = a3 y4 = a4 + a7
D5
=
D6 = a5
D7 = a4x
Т.к. состояния автомата закодированы унитарным кодом, то можно отождествить каждое состояние с выходом соответствующего триггера, т.е. принять аi=Qi. Для принятого способа кодирования переход из одного состояния в другое как бы сопровождается сдвигом кода, записанного в семиразрядном регистре. Этим и объясняется название метода. Функциональная схема автомата Мура, построенная по полученным уравнениям, приведена на рисунке 5.22. При определенных навыках синтез автомата Мура на базе регистра сдвига выполняется непосредственно по отмеченной ГСА без построения структурной таблицы переходов-выходов.
