- •Содержание
- •Вопросы и задания …………………………………….…………………...89
- •Тема 7. Корреляционно-регрессионный анализ в экономическом прогнозировании........................................................................................123
- •Вопросы и задания………………………………………………….…….132
- •Тема 8. Интуитивные методы прогнозирования……………………..151
- •Вопросы и задания …………………………….…………………….……162
- •Тема 9. Коллективные экспертные оценки……………………….……165
- •Тема 10. Методы предпрогнозных исследований……………………..189
- •Вопросы и задания …………………………………………………….…197
- •Тема 11. Верификация экономических прогнозов…………………….207
- •Вопросы и задания ……………………………………………….………213
- •1. Цели и задачи изучения дисциплины
- •2. Содержание дисциплины
- •Тема 1.Сущность экономического прогнозирования
- •Тема 2. Организация экономического прогнозирования.
- •Тема 3. Информационное обеспечение экономического прогнозирования
- •Тема 4. Формализованные методы прогнозирования
- •Тема 5. Методы прогнозирования динамики экономических процессов
- •Тема 6. Прогнозирование сезонных процессов
- •Тема 7. Корреляционно-регрессионный анализ в экономическом прогнозировании
- •Тема 8. Интуитивные методы прогнозирования
- •Тема 9. Коллективные экспертные оценки
- •Тема 10. Методы предпрогнозных исследований
- •Тема 11.Верификация экономических прогнозов
- •Тема 1 сущность экономического прогнозирования
- •Характеристика основных форм предвидения
- •1. 2. Предпосылки экономического прогнозирования
- •Историческая справка
- •1.3. Принципы прогнозирования
- •1.4. Классификация экономических прогнозов
- •Тема 2 организация экономического прогнозирования
- •2.1. Основные составляющие организации прогнозирования
- •2.2. Организация государственного прогнозирования социально-экономического развития в Российской Федерации
- •2.3. Технология прогнозирования
- •Процедурная схема прогнозирования
- •2.4. Общая характеристика методов прогнозирования
- •Тема 3 Информационное обеспечение экономического прогнозирования
- •3.1. Классификация экономической информации. Источники информации
- •3.2.Требования к информации, используемой в экономическом прогнозировании
- •3.3. Показатели как инструмент информационного обеспечения прогнозов
- •3.4. Виды шкал в экономических исследованиях и прогнозировании
- •Тема 4 Формализованные методы прогнозирования
- •4.1. Общая характеристика формализованных методов прогнозирования
- •4.2. Оценка качества количественного прогноза
- •Тема 5 методы прогнозирования динамики экономических процессов
- •5.1. Типы моделей динамики данных и методы прогнозирования
- •5.2. Временной ряд. Виды временных рядов. Основные правила построения.
- •5.3. Наивные модели. Простые и скользящие средние
- •5.4. Прогнозная экстраполяция. Последовательность этапов
- •Основные этапы прогнозной экстраполяции
- •Предварительная обработка исходной информации
- •Алгоритмы расчета параметров функций прогнозной экстраполяции
- •Объем выпуска продукции (млн. Руб.) первый вариант
- •Объем выпуска продукции (млн. Руб.)
- •Справочная информация
- •Статистические функции табличного редактора excel
- •Спрос на столы, тыс. Шт.
- •Прибыль компании, млн. Руб.
- •Объем выпуска продукции, штук
- •Тема 6 прогнозирование сезонных процессов
- •6.1. Влияние сезонного фактора на динамику экономических процессов
- •6.2. Методы построения прогноза динамики с учетом сезонных колебаний
- •6.3. Построение прогнозной модели с аддитивной компонентой. Последовательность этапов:
- •6.4. Построение модели с мультипликативной компонентой
- •Последовательность этапов:
- •6.5. Построение модели с мультипликативной компонентой
- •Последовательность этапов:
- •Лабораторная работа 2 прогнозирование сезонных изменений
- •Упражнение 2
- •Упражнение 3 в таблице 1 приведены условные данные об объеме продаж мороженого. Сделать прогноз на следующий год (поквартально).
- •Исходные данные
- •Обработка исходных данных
- •Индексы сезонности
- •Тема 7 корреляционно-регрессионный анализ в экономическом прогнозировании
- •7.1. Зависимость между экономическими явлениями как предпосылка прогнозирования
- •7.2. Сущность корреляционно-регрессионного анализа
- •7.3. Прогнозирование на основе однофакторных моделей линейной регрессии: последовательность процедур
- •7.4. Прогнозирование динамики с учетом временного лага
- •Лабораторная работа 3. Корреляционно-регрессионный анализ в прогнозировании
- •Справочная информация
- •Статистические функции табличного редактора excel
- •Лабораторная работа 4 прогнозирование конъюнктуры рынка методом корреляционно-регрессионного анализа
- •!!!Ввод формул начинается со знака равенства.
- •Обработка исходных данных
- •Характеристики распределения
- •!!! Чтобы зафиксировать х как постоянную величину,
- •25. Рассчитать ((Хi - ) * (Yi - )). В ячейку q 16 ввести формулу
- •Лабораторная работа 5 прогнозирование динамики с учетом временного лага
- •Исходные данные
- •Тема 8. Интуитивные методы прогнозирования
- •8.1. Общая характеристика интуитивных методов прогнозирования. Классификация интуитивных методов прогнозирования
- •Сфера использования экспертных методов
- •8.2.Организационные аспекты интуитивного прогнозирования. Формирование и функции рабочей и экспертной группы
- •8.3. Способы оценки компетентности экспертов
- •Анкета оценки профессиональных качеств экспертов
- •Матрица оценки компетентности экспертов 1-го порядка
- •Тема 9 коллективные экспертные оценки
- •9.1. Формирование экспертной группы
- •9. 2. Методы зависимого интеллектуального эксперимента. Правила проведения и сфера применения «мозговой атаки»
- •9.3. Методы независимого интеллектуального эксперимента. Обработка и представление результатов коллективных экспертных опросов
- •Разработка анкеты экспертного опроса:
- •9.4. Метод Дельфи: область применения, правила проведения, статистическая обработка результатов анкетирования
- •Историческая справка
- •Обработка информации, полученной методом Дельфи:
- •9.5. Метод ранговой корреляции
- •Лабораторная работа 6 прогнозирование спроса и предложения на товарном рынке
- •Тема 10 методы предпрогнозных исследований
- •10.1.Способы формирования научных гипотез в экономическом прогнозировании
- •10.2. Морфологический анализ как метод оценки качественно различных альтернатив
- •Используемые на практике морфологические методы решения
- •10.3. Прогнозные сценарии в экономическом прогнозировании
- •Лабораторная работа 8 построение сценариев развития региона
- •Оценка воздействия событий на показатели системы
- •Тема 11 верификация экономических прогнозов
- •11.1. Выбор метода прогнозирования
- •11. 2. Виды и способы верификации прогнозов
- •11.3. Причины ошибок в экономическом прогнозировании
- •Словарь основных терминов
- •Рекомендуемая литература
- •Приложения о государственном прогнозировании и программах
7.2. Сущность корреляционно-регрессионного анализа
Корреляционнo-регрессионный анализ используется для исследования форм связи, устанавливающих количественные соотношения между случайными величинами изучаемого процесса. В социально-экономическом прогнозировании этот метод применяют для построения условных прогнозов. При этом значение независимой переменной (Х) нам известно по предположению. В процессе прогнозирования оно может быть использовано нами для оценки зависимой переменной (Y). Функция регрессии Y = f(X1, X2, X3, X4,…Xm) показывает, каким будет в среднем значение переменной Y, если переменные X примут конкретное значение.
Переменная Y, характеризующая результат, формируется под воздействием других переменных и факторов. Поэтому она всегда стохастична (случайна) по природе. Переменные Х (объясняющие переменные), характеризуют причину. Они поддаются регистрации, а часть из них планированию и регулированию. Значения ряда переменных Х могут задаваться "извне" прогнозируемой системы. По своей природе объясняющие переменные могут быть случайными и неслучайными. Регрессионные остатки ε - это латентные (скрытые) случайные компоненты, влияющие на Y, а также случайные ошибки в измерении анализируемых результирующих переменных.
В зависимости от количества исследуемых переменных различают парную и множественную корреляцию.
Парная корреляция корреляционные связи между двумя переменными. Примерами парной корреляции могут служить зависимости между уровнем образования и производительностью труда, между ценой товара и спросом на него, между качественными параметрами товара и ценой. Экономико-математические модели, построенные с учетом такого рода взаимосвязей, называют однофакторными моделями. Следует отметить, что в практике прогнозирования экономических явлений однофакторные модели занимают значительное место, что определяется простотой вычислительного процесса и ясностью экономической интерпретации результатов.
Множественная корреляция корреляционные взаимосвязи между несколькими переменными. В качестве примеров множественной корреляции можно привести зависимость спроса на товар от цены, уровня доходов населения, расходов на рекламу; зависимость объема выпускаемой продукции от размера инвестиций, технического уровня оборудования, численности занятых в процессе производства.
Примеры корреляционных зависимостей
1.Примером использования корреляционной зависимости для прогнозирования и принятия управленческих решений могут служить кривые спроса и предложения, на основе которых строятся модели, описывающие последствия изменения цен.
2.В конце ХIХ века немецкий статистик Э. Энгель сформулировал законы и построил кривые, согласно которым с ростом дохода доля расходов на питание сокращается, доля расходов на одежду и жилище остается неизменной, а расходов на образование и лечение – увеличивается. Данные кривые послужили исходным пунктом построения различных моделей, описывающих поведение покупателей при изменении их доходов и соответственно используемых при прогнозировании спроса на товары и услуги.
3.Немецкий исследователь Г.Госсен сформулировал утверждения о зависимости потребительской оценки полезности от количества благ и дал им математическую интерпретацию.
4.Примерами множественной корреляции могут служить различные модели экономического роста (модель Е.Домара, модель Р.Ф.Харрода, модель Р.Солоу), описывающие зависимость реального дохода в экономике от наиболее значимых факторов.
5.В конце 60-х годов ХХ века эмпирическим путем была установлена закономерность снижения переменных издержек на производство единицы продукции на 10-30 % при каждом удвоении объема производства. Данная зависимость получила название кривая опыта. Она лежит в основе многих концепций деловой стратегии.
При анализе временных рядов часто встречается ложная корреляция, когда параллельно повышаются или снижаются показатели, на самом деле совершенно не зависящие друг от друга. Ложная корреляция это отсутствие причинной связи между явлениями, связанными корреляционной связью.
Регрессионный анализ часть теории корреляции. В процессе регрессионного анализа решаются задачи выбора независимых переменных, существенно влияющих на зависимую величину, определение формы уравнения регрессии, оценивание параметров.
Мы рассмотрим модель линейной регрессии, как наиболее доступную для понимания и довольно часто используемую на практике. Множественные модели также находят практическое применение, но обычно для их построения используются пакеты прикладных программ. Проблема, с которой сталкивается прогнозист при использовании пакетов прикладных программ, заключается в оценке адекватности отображения действительности и будущих взаимосвязей в регрессионных моделях и корректное их использование для прогнозирования будущего.
