Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
прогнозирование-пособие_2007.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.79 Mб
Скачать

7.2. Сущность корреляционно-регрессионного анализа

Корреляционнo-регрессионный анализ  используется для исследования форм связи, устанавливающих количественные соотношения между случайными величинами изучаемого процесса. В социально-экономическом прогнозировании этот метод применяют для построения условных прогнозов. При этом значение независимой переменной (Х) нам известно по предположению. В процессе прогнозирования оно может быть использовано нами для оценки зависимой переменной (Y). Функция регрессии Y = f(X1, X2, X3, X4,…Xm) показывает, каким будет в среднем значение переменной Y, если переменные X примут конкретное значение.

Переменная Y, характеризующая результат, формируется под воздействием других переменных и факторов. Поэтому она всегда стохастична (случайна) по природе. Переменные Х (объясняющие переменные), характеризуют причину. Они поддаются регистрации, а часть из них планированию и регулированию. Значения ряда переменных Х могут задаваться "извне" прогнозируемой системы. По своей природе объясняющие переменные могут быть случайными и неслучайными. Регрессионные остатки ε - это латентные (скрытые) случайные компоненты, влияющие на Y, а также случайные ошибки в измерении анализируемых результирующих переменных.

В зависимости от количества исследуемых переменных различают парную и множественную корреляцию.

Парная корреляция корреляционные связи между двумя переменными. Примерами парной корреляции могут служить зависимости между уровнем образования и производительностью труда, между ценой товара и спросом на него, между качественными параметрами товара и ценой. Экономико-математические модели, построенные с учетом такого рода взаимосвязей, называют однофакторными моделями. Следует отметить, что в практике прогнозирования экономических явлений однофакторные модели занимают значительное место, что определяется простотой вычислительного процесса и ясностью экономической интерпретации результатов.

Множественная корреляция  корреляционные взаимосвязи между несколькими переменными. В качестве примеров множественной корреляции можно привести зависимость спроса на товар от цены, уровня доходов населения, расходов на рекламу; зависимость объема выпускаемой продукции от размера инвестиций, технического уровня оборудования, численности занятых в процессе производства.

Примеры корреляционных зависимостей

1.Примером использования корреляционной зависимости для прогнозирования и принятия управленческих решений могут служить кривые спроса и предложения, на основе которых строятся модели, описывающие последствия изменения цен.

2.В конце ХIХ века немецкий статистик Э. Энгель сформулировал законы и построил кривые, согласно которым с ростом дохода доля расходов на питание сокращается, доля расходов на одежду и жилище остается неизменной, а расходов на образование и лечение – увеличивается. Данные кривые послужили исходным пунктом построения различных моделей, описывающих поведение покупателей при изменении их доходов и соответственно используемых при прогнозировании спроса на товары и услуги.

3.Немецкий исследователь Г.Госсен сформулировал утверждения о зависимости потребительской оценки полезности от количества благ и дал им математическую интерпретацию.

4.Примерами множественной корреляции могут служить различные модели экономического роста (модель Е.Домара, модель Р.Ф.Харрода, модель Р.Солоу), описывающие зависимость реального дохода в экономике от наиболее значимых факторов.

5.В конце 60-х годов ХХ века эмпирическим путем была установлена закономерность снижения переменных издержек на производство единицы продукции на 10-30 % при каждом удвоении объема производства. Данная зависимость получила название кривая опыта. Она лежит в основе многих концепций деловой стратегии.

При анализе временных рядов часто встречается ложная корреляция, когда параллельно повышаются или снижаются показатели, на самом деле совершенно не зависящие друг от друга. Ложная корреляция это отсутствие причинной связи между явлениями, связанными корреляционной связью.

Регрессионный анализ  часть теории корреляции. В процессе регрессионного анализа решаются задачи выбора независимых переменных, существенно влияющих на зависимую величину, определение формы уравнения регрессии, оценивание параметров.

Мы рассмотрим модель линейной регрессии, как наиболее доступную для понимания и довольно часто используемую на практике. Множественные модели также находят практическое применение, но обычно для их построения используются пакеты прикладных программ. Проблема, с которой сталкивается прогнозист при использовании пакетов прикладных программ, заключается в оценке адекватности отображения действительности и будущих взаимосвязей в регрессионных моделях и корректное их использование для прогнозирования будущего.