- •В. В. Красник Эксплуатация электрических подстанций и распределительных устройств
- •Аннотация
- •В. В. Красник Эксплуатация электрических подстанций и распределительных устройств Введение
- •Глава 2 посвящена собственно вопросам эксплуатации оборудования подстанций, главным образом, силовых трансформаторов и автотрансформаторов.
- •Глава 1. Общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств
- •1.1. Структура электроэнергетической отрасли
- •1.2. Классификация электрических подстанций и распределительных устройств. Основные определения
- •1.3. Нормативно-техническая документация по обслуживанию электрических подстанций и распределительных устройств
- •1.4. Общие требования к пс, ру, рп, ртп и тп
- •1.5. Общие требования к закрытым пс и зру
- •1.6. Общие требования к открытым пс и ору
- •1.7. Общие требования к организации ремонта и технического обслуживания вл
- •1.8. Структура оперативно-диспетчерского управления
- •Глава 2. Обслуживание оборудования подстанций
- •2.1. Производственные помещения для обслуживания пс
- •2.2. Обслуживание силовых трансформаторов и автотрансформаторов
- •2.2.1. Термины и определения
- •2.2.2 Параметры и режимы работы трансформаторов и автотрансформаторов
- •2.2.3. Допустимые перегрузки трансформаторов и автотрансформаторов
- •2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов
- •2.3. Включение трансформатора в сеть и контроль за его работой
- •2.4. Параллельная работа трансформаторов
- •2.5. Обслуживание устройств регулирования напряжения
- •2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов
- •2.7. Защита оборудования пс от перенапряжений
- •2.8. Трансформаторное масло: изоляционные свойства, отбор проб, очистка, осушка и регенерация
- •2.9. Маслонаполненные вводы: обслуживание, контроль изоляции
- •2.10. Повреждения при работе трансформаторов
- •Глава 3. Обслуживание синхронных компенсаторов
- •3.1. Понятие о реактивной мощности. Режимы работы синхронных компенсаторов
- •3.2. Системы возбуждения синхронных компенсаторов
- •3.3. Система охлаждения
- •3.4. Система водоснабжения
- •3.5. Система маслоснабжения
- •3.6. Порядок действий персонала при пуске и останове ск и выводе его в ремонт
- •3.7. Осмотры ск и контроль за его работой
- •Глава 4. Обслуживание коммутационных аппаратов
- •4.1. Термины, определения и классификация коммутационных аппаратов высокого напряжения
- •4.2. Обслуживание выключателей высокого напряжения
- •4.2.1. Требования к выключателям
- •4.2.2. Обслуживание масляных выключателей
- •4.2.3. Обслуживание воздушных выключателей
- •4.2.4. Обслуживание элегазовых выключателей
- •4.2.5. Обслуживание вакуумных выключателей
- •4.2.6. Операции с выключателями и проверка их работоспособности
- •4.3. Обслуживание разъединителей, отделителей и короткозамыкателей
- •4.3.1. Обслуживание разъединителей и отделителей
- •4.3.2. Операции с разъединителями и отделителями
- •4.4. Обслуживание установок приготовления сжатого воздуха
- •Глава 5. Обслуживание измерительных и защитных аппаратов, реакторов и кабелей
- •5.1. Обслуживание трансформаторов тока
- •5.2. Обслуживание трансформаторов напряжения
- •5.3. Обслуживание конденсаторов связи и отбора мощности и вч заградителей
- •5.4. Обслуживание разрядников и ограничителей перенапряжений
- •5.5. Обслуживание токоограничивающих реакторов
- •5.6. Обслуживание силовых и контрольных кабелей
- •Глава 6. Обслуживание элементов распределительных устройств
- •6.1. Общие требования к ру напряжением выше 1 кВ
- •6.2. Обслуживание шин и контактных соединений
- •6.3. Обслуживание высоковольтных изоляторов
- •6.4. Заземляющие устройства на пс и в ру
- •6.5. Устройства оперативной блокировки
- •6.6. Обслуживание элементов кру
- •Глава 7. Обслуживание цепей оперативного тока
- •7.1. Источники оперативного тока на пс
- •7.2. Устройство, характеристики, режимы работы и особенности эксплуатации аккумуляторных батарей
- •7.3. Преобразователи энергии: двигатели-генераторы и выпрямители
- •7.4. Контроль изоляции цепей оперативного тока
- •Глава 8. Особенности обслуживания устройств релейной защиты и автоматики
- •8.1. Общие положения по обслуживанию устройств рЗиА
- •8.2. Характер повреждений в электрических сетях и утяжеленные режимы их работы
- •8.3. Максимальная токовая и токовая направленная защиты
- •8.4. Токовая направленная защита нулевой последовательности
- •8.5. Дистанционная защита линий
- •8.6. Продольная дифференциальная защита
- •8.7. Поперечная дифференциальная токовая направленная защита
- •8.8. Дифференциально-фазная высокочастотная защита
- •8.9. Дифференциальная токовая и другие виды дифференциальной защиты
- •8.10. Газовая защита трансформаторов
- •8.11. Защита синхронных компенсаторов
- •8.12. Устройства резервирования отказов выключателей
- •8.13. Автоматическое повторное включение линий, шин и трансформаторов
- •8.14. Автоматическое включение резерва
- •8.15. Обслуживание устройств рЗиА
- •Глава 9. Фазировка электрического оборудования
- •9.1. Общие понятия и определения
- •9.2. Методы и порядок выполнения фазировки
- •Глава 10. Порядок и последовательность выполнения оперативных переключений на подстанциях
- •10.1. Общие положения
- •10.2. Распоряжения о переключениях и порядок их выполнения
- •10.3. Последовательность типовых операций с коммутационными аппаратами при включении и отключении вл, к л и трансформаторов
- •10.4. Последовательность операций при включении и отключении электрических цепей
- •10.5. Переключения при ликвидации технологических нарушений
- •10.6. Переключения при вводе в работу нового оборудования и проведении испытаний
- •10.7. Последовательность операций при отключении и включении электрических цепей на пс, выполненных по упрощенным схемам
- •10.8. Последовательность операций на пс с двумя системами шин при выводе одной из них в ремонт
- •10.9. Перевод присоединений с одной системы шин на другую без шсв в ру
- •10.10. Вывод выключателей в ремонт и ввод их в работу после ремонта
- •Глава 11. Предупреждение и устранение аварийных ситуаций в электрических сетях
- •11.1. Порядок организации работ при ликвидации аварий
- •11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов
- •11.3. Предупреждение отказов выключателей
- •11.4. Операции с шинными разъединителями
- •11.5. Недопустимость феррорезонансных явлений
- •11.6. Причины возникновения аварийных ситуаций в электрических сетях и действия персонала по их предупреждению и устранению
- •11.7. Действия персонала при аварийном отключении вл и кл
- •11.8. Действия персонала при аварийном отключении трансформаторов
- •11.9. Действия персонала при аварийном отключении сборных шин
- •11.10. Определение мест повреждений на лэп
- •Глава 12. Оперативная документация на пс
- •12.1. Оперативный журнал
- •12.2. Оперативная схема и схема-макет электрических соединений электростанций и подстанций
- •12.3. Бланки переключений
- •Глава 13. Требования к персоналу энергопредприятий
- •13.1. Общие положения
- •13.2. Подготовка по новой должности
- •13.3. Стажировка
- •13.4. Проверка знаний норм и правил
- •13.5. Дублирование
- •13.6. Допуск к самостоятельной работе
- •13.7. Инструктажи по безопасности и охране труда
- •13.8. Контрольные противоаварийные и противопожарные тренировки
- •13.9. Специальная подготовка
- •Принятые сокращения
- •Список литературы
6.2. Обслуживание шин и контактных соединений
Шинопровод — это токоведущие элементы, расположенные в металлической оболочке, служащие для соединения главных цепей составных частей в соответствии со схемой соединения и конструктивным исполнением РУ (ГОСТ 14695—80).
Контактное соединение — это контакт электрической цепи, предназначенный только для проведения электрического тока и не предназначенный для коммутации электрической цепи при заданном действии устройства (ГОСТ 14312—79).
В РУ из экономических соображений применяются в основном шины из алюминия и его сплавов. Медные шины находят применение, как правило, в установках с большими токами и в специальных установках.
Шины различаются по форме поперечного сечения: прямоугольные (плоские полосы), трубчатые (квадратного и круглого сечения), а также шины корытного профиля, которые по своим свойствам близки к трубчатым шинам.
В РУ наружной установки 35 кВ и выше применяются шины из гибких многопроволочных проводов. При токах более 1000 А применяют пучки из двух, трех и большего числа проводов на фазу. В ряде случаев шины выполняют трубами из алюминия.
Площадь поперечного сечения шин выбирают по значению рабочего тока и току КЗ. При КЗ температура нагрева алюминиевых шин не должна превышать 200 °C.
Контактные соединения шин, электрических аппаратов и кабелей являются их неотъемлемыми частями. Причинами многих аварий на ПС были неудовлетворительные состояния контактных соединений, в том числе и на шинах, а также подвижных частей и гибких связей разъединителей, в частности из-за неплотного касания, загрязнения и окисления контактных поверхностей.
В местах плохого контакта вследствие повышенного активного сопротивления выделяется большое количество теплоты с последующим перегревом и расплавлением металла соприкасающихся поверхностей. Поэтому контакты и их поверхности требуют постоянного наблюдения и ухода.
При осмотре и проверке шинопроводов тщательно проверяют контактные соединения, крепления опорных и проходных изоляторов.
Шины прямоугольного сечения соединяют внахлестку двумя болтами при ширине шин до 60 мм и четырьмя болтами — при ширине шин 80 мм и более. Длина участка болтового соединения должна составлять не менее двойной ширины соединяемых шин.
Ремонт контактных соединений сводится к очистке поверхностей бензином, ацетоном или уайтспиритом от смазки и грязи, удалению ржавчины со стальных и оксидной пленки с алюминиевых шин. Болты затягивают до отказа, но так, чтобы под ними не сминался материал шин и не повреждалась резьба болтов. Сильно затянутое болтами соединение алюминиевых контактов с течением времени ослабевает, так как алюминий под воздействием большого давления вытесняется из зоны высокого давления и дает невосстанавливаемую усадку.
Контактное соединение считается удовлетворительным, если щуп размером 0,05×10 мм входит в межконтактное пространство (между шинами) не более чем на 5 мм.
Количество теплоты, выделяющееся в контактном соединении, пропорционально квадрату тока и значению переходного сопротивления. При длительном прохождении тока температура нагрева контактов не должна превышать значений, приведенных в табл. 6.1.
Таблица 6.1
Контактные соединения выполняют таким образом, чтобы переходное сопротивление участка цепи, содержащей контакт, было меньше сопротивления участка целого провода той же длины. Благодаря этому температура нагрева контакта меньше температуры целого проводника. Отношение этих величин характеризует дефектность контакта.
Дефектность контактных соединений определяют падением напряжения на участке цепи, содержащем контактное соединение, при прохождении по контакту рабочего тока или измерением переходного сопротивления контакта.
Дефектность контактного соединения определяется следующими отношениями:
Если состояние контакта хорошее, то
и наоборот.
Состояние контактных соединений коммутационных аппаратов оценивается абсолютными значениями их сопротивлений, которые не должны превышать допустимых (нормируемых) значений.
По своему назначению контакты разделяются нанеразъемные, разъемные и подвижные.
По исполнению контакты бывают болтовыми, сварными, прессуемыми, обжимными, переходными (с алюминия на медь).
Более надежными в эксплуатации по сравнению с болтовыми справедливо считаются сварные, прессуемые и обжимные контакты.
Контактные пары из алюминия имеют тот недостаток, что уже при обработке контактные поверхности окисляются, и получить надежный контакт без удаления оксидной пленки невозможно. С целью повышения качества и свойств алюминиевых контактных соединений осуществляют их меднение, лужение, серебрение и т. д.
Для защиты контактов масляных и воздушных выключателей от повреждения дугой к ним припаивают тонкие металлические накладки, изготовленные из порошка тугоплавкого вольфрама и хорошо проводящих металлов (серебра или меди).
На переходное сопротивление контактов значительное влияние оказывает чистота обработки их поверхностей и сжимающие силы. С увеличением нажатия чистота обработки сказывается меньше. Большие сжимающие силы обеспечивают более низкие переходные сопротивления. Чтобы не превысить критических значений сил, болты зажимов затягивают ключом с регулируемым моментом.
Измерение температуры и контроль нагрева контактных соединений обязательны при прохождении максимальных токов нагрузки.
Измерение температуры нагрева контакта производится переносным электротермометром или при помощи термосвеч.
Переносной электротермометр предназначен для измерений на токоведущих частях напряжением до 10 кВ и представляет собой компактный неравномерный мост, в одно плечо которого включен медный термометр сопротивления, а в диагональ — микроамперметр. Для питания моста применяется батарейка. При измерении головку датчика температуры прибора прижимают к контакту и через 20–30 с считывают значение температуры со шкалы прибора. Электротермометр имеет погрешность 2,5 % в обе стороны.
При помощи термосвеч определяется степень нагрева контактов. Комплект состоит из пяти свечей с температурами плавления 50, 80, 100, 130 и 160 °C.
Закрепленной на изоляционной штанге специальным держателем свечой касаются отдельных частей контакта. При температуре нагрева этой части, близкой к температуре плавления материала свечи, конец ее плавится. Расплавляемые свечи применяют поочередно в порядке возрастания их температур плавления.
Нагрев контактных соединений контролируют при помощи термопленочных указателей многократного действия в ЗРУ и термоуказателей однократного действия с легкоплавким припоем — на ОРУ.
Термопленочные указатели в виде узких полосок наклеивают на металлические части контактных соединений. В интервале температур 70-100 °C термопленка изменяет свой цвет с красного на черный. При охлаждении контакта черный цвет вновь становится красным. Если контакт нагревается до температуры более 120 °C и его температура удерживается на этом уровне в течение 1–2 ч, термопленка приобретает грязновато-желтую окраску и после охлаждения контакта уже не восстанавливает своего первоначального красного цвета. По изменению цвета пленки судят о степени нагрева контактов.
Указатели нагрева с легкоплавким припоем применяют в местах, не доступных для контроля нагрева контактов при помощи термопленок. Два конца медной проволоки соединяют припоем с различным содержанием олова, свинца и висмута. Температура плавления таких припоев может быть получена от 95 до 160 °C. Один конец спаянной проволоки закрепляют непосредственно на контактном зажиме, а другой, загнутый в колечко, служит указателем.
При нагреве контакта, а вместе с ним и указателя до температуры, превышающей температуру плавления припоя, указатель отпадает, что свидетельствует о недопустимом нагреве контакта.
Для выявления перегрева контактов используются тепловизоры и инфракрасные радиометры.
Радиометр представляет собой прибор, фокусирующий тепловое излучение на чувствительный элемент, передающий соответствующий выходной сигнал на стрелочный индикатор. Наводка объектива радиометра на контактное соединение производится через оптический окуляр. При измерении прибор устанавливается на расстоянии 2-20 м от токопроводящей части.
С помощью радиометров выявляют неисправные контактные соединения разъединителей, токопроводов, наконечников кабелей, выводов силовых трансформаторов и другого оборудования.
