- •В. В. Красник Эксплуатация электрических подстанций и распределительных устройств
- •Аннотация
- •В. В. Красник Эксплуатация электрических подстанций и распределительных устройств Введение
- •Глава 2 посвящена собственно вопросам эксплуатации оборудования подстанций, главным образом, силовых трансформаторов и автотрансформаторов.
- •Глава 1. Общие требования к организации работ по техническому обслуживанию электрических подстанций и распределительных устройств
- •1.1. Структура электроэнергетической отрасли
- •1.2. Классификация электрических подстанций и распределительных устройств. Основные определения
- •1.3. Нормативно-техническая документация по обслуживанию электрических подстанций и распределительных устройств
- •1.4. Общие требования к пс, ру, рп, ртп и тп
- •1.5. Общие требования к закрытым пс и зру
- •1.6. Общие требования к открытым пс и ору
- •1.7. Общие требования к организации ремонта и технического обслуживания вл
- •1.8. Структура оперативно-диспетчерского управления
- •Глава 2. Обслуживание оборудования подстанций
- •2.1. Производственные помещения для обслуживания пс
- •2.2. Обслуживание силовых трансформаторов и автотрансформаторов
- •2.2.1. Термины и определения
- •2.2.2 Параметры и режимы работы трансформаторов и автотрансформаторов
- •2.2.3. Допустимые перегрузки трансформаторов и автотрансформаторов
- •2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов
- •2.3. Включение трансформатора в сеть и контроль за его работой
- •2.4. Параллельная работа трансформаторов
- •2.5. Обслуживание устройств регулирования напряжения
- •2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов
- •2.7. Защита оборудования пс от перенапряжений
- •2.8. Трансформаторное масло: изоляционные свойства, отбор проб, очистка, осушка и регенерация
- •2.9. Маслонаполненные вводы: обслуживание, контроль изоляции
- •2.10. Повреждения при работе трансформаторов
- •Глава 3. Обслуживание синхронных компенсаторов
- •3.1. Понятие о реактивной мощности. Режимы работы синхронных компенсаторов
- •3.2. Системы возбуждения синхронных компенсаторов
- •3.3. Система охлаждения
- •3.4. Система водоснабжения
- •3.5. Система маслоснабжения
- •3.6. Порядок действий персонала при пуске и останове ск и выводе его в ремонт
- •3.7. Осмотры ск и контроль за его работой
- •Глава 4. Обслуживание коммутационных аппаратов
- •4.1. Термины, определения и классификация коммутационных аппаратов высокого напряжения
- •4.2. Обслуживание выключателей высокого напряжения
- •4.2.1. Требования к выключателям
- •4.2.2. Обслуживание масляных выключателей
- •4.2.3. Обслуживание воздушных выключателей
- •4.2.4. Обслуживание элегазовых выключателей
- •4.2.5. Обслуживание вакуумных выключателей
- •4.2.6. Операции с выключателями и проверка их работоспособности
- •4.3. Обслуживание разъединителей, отделителей и короткозамыкателей
- •4.3.1. Обслуживание разъединителей и отделителей
- •4.3.2. Операции с разъединителями и отделителями
- •4.4. Обслуживание установок приготовления сжатого воздуха
- •Глава 5. Обслуживание измерительных и защитных аппаратов, реакторов и кабелей
- •5.1. Обслуживание трансформаторов тока
- •5.2. Обслуживание трансформаторов напряжения
- •5.3. Обслуживание конденсаторов связи и отбора мощности и вч заградителей
- •5.4. Обслуживание разрядников и ограничителей перенапряжений
- •5.5. Обслуживание токоограничивающих реакторов
- •5.6. Обслуживание силовых и контрольных кабелей
- •Глава 6. Обслуживание элементов распределительных устройств
- •6.1. Общие требования к ру напряжением выше 1 кВ
- •6.2. Обслуживание шин и контактных соединений
- •6.3. Обслуживание высоковольтных изоляторов
- •6.4. Заземляющие устройства на пс и в ру
- •6.5. Устройства оперативной блокировки
- •6.6. Обслуживание элементов кру
- •Глава 7. Обслуживание цепей оперативного тока
- •7.1. Источники оперативного тока на пс
- •7.2. Устройство, характеристики, режимы работы и особенности эксплуатации аккумуляторных батарей
- •7.3. Преобразователи энергии: двигатели-генераторы и выпрямители
- •7.4. Контроль изоляции цепей оперативного тока
- •Глава 8. Особенности обслуживания устройств релейной защиты и автоматики
- •8.1. Общие положения по обслуживанию устройств рЗиА
- •8.2. Характер повреждений в электрических сетях и утяжеленные режимы их работы
- •8.3. Максимальная токовая и токовая направленная защиты
- •8.4. Токовая направленная защита нулевой последовательности
- •8.5. Дистанционная защита линий
- •8.6. Продольная дифференциальная защита
- •8.7. Поперечная дифференциальная токовая направленная защита
- •8.8. Дифференциально-фазная высокочастотная защита
- •8.9. Дифференциальная токовая и другие виды дифференциальной защиты
- •8.10. Газовая защита трансформаторов
- •8.11. Защита синхронных компенсаторов
- •8.12. Устройства резервирования отказов выключателей
- •8.13. Автоматическое повторное включение линий, шин и трансформаторов
- •8.14. Автоматическое включение резерва
- •8.15. Обслуживание устройств рЗиА
- •Глава 9. Фазировка электрического оборудования
- •9.1. Общие понятия и определения
- •9.2. Методы и порядок выполнения фазировки
- •Глава 10. Порядок и последовательность выполнения оперативных переключений на подстанциях
- •10.1. Общие положения
- •10.2. Распоряжения о переключениях и порядок их выполнения
- •10.3. Последовательность типовых операций с коммутационными аппаратами при включении и отключении вл, к л и трансформаторов
- •10.4. Последовательность операций при включении и отключении электрических цепей
- •10.5. Переключения при ликвидации технологических нарушений
- •10.6. Переключения при вводе в работу нового оборудования и проведении испытаний
- •10.7. Последовательность операций при отключении и включении электрических цепей на пс, выполненных по упрощенным схемам
- •10.8. Последовательность операций на пс с двумя системами шин при выводе одной из них в ремонт
- •10.9. Перевод присоединений с одной системы шин на другую без шсв в ру
- •10.10. Вывод выключателей в ремонт и ввод их в работу после ремонта
- •Глава 11. Предупреждение и устранение аварийных ситуаций в электрических сетях
- •11.1. Порядок организации работ при ликвидации аварий
- •11.2. Замыкание фазы на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов
- •11.3. Предупреждение отказов выключателей
- •11.4. Операции с шинными разъединителями
- •11.5. Недопустимость феррорезонансных явлений
- •11.6. Причины возникновения аварийных ситуаций в электрических сетях и действия персонала по их предупреждению и устранению
- •11.7. Действия персонала при аварийном отключении вл и кл
- •11.8. Действия персонала при аварийном отключении трансформаторов
- •11.9. Действия персонала при аварийном отключении сборных шин
- •11.10. Определение мест повреждений на лэп
- •Глава 12. Оперативная документация на пс
- •12.1. Оперативный журнал
- •12.2. Оперативная схема и схема-макет электрических соединений электростанций и подстанций
- •12.3. Бланки переключений
- •Глава 13. Требования к персоналу энергопредприятий
- •13.1. Общие положения
- •13.2. Подготовка по новой должности
- •13.3. Стажировка
- •13.4. Проверка знаний норм и правил
- •13.5. Дублирование
- •13.6. Допуск к самостоятельной работе
- •13.7. Инструктажи по безопасности и охране труда
- •13.8. Контрольные противоаварийные и противопожарные тренировки
- •13.9. Специальная подготовка
- •Принятые сокращения
- •Список литературы
2.7. Защита оборудования пс от перенапряжений
Защита высоковольтного оборудования ПС от грозовых и коммутационных перенапряжений осуществляется:
от прямых ударов молнии — стержневыми и тросовыми молниеотводами;
от набегающих волн с отходящих линий — молниеотводами (от прямых ударов молнии на определенной длине этих линий) и защитными аппаратами, устанавливаемыми на подходах и в РУ, к которым относятся разрядники вентильные (РВ), ОПН, разрядники трубчатые (РТ) и защитные искровые промежутки.
Для оборудования ПС 110–220 кВ наибольшую опасность представляют грозовые перенапряжения, вследствие чего вольт-секундные характеристики искровых промежутков РВ должны быть такими, чтобы разрядники (например, типов РВС, РВМ, РВМГ) были отстроены от воздействия коммутационных перенапряжений.
Для сетей 330–750 кВ опасны как грозовые, так и коммутационные перенапряжения. Вследствие этого разрядники для ПС с таким напряжением (например, типа РВМК) выбираются на срабатывание при воздействии как грозовых, так и коммутационных перенапряжений.
Здания ЗРУ и ПС следует защищать от прямых ударов молнии в районах с числом грозовых часов в году более 20.
При установке стержневых молниеотводов на защищаемом здании от каждого молниеотвода прокладываются не менее двух токоотводов по противоположным сторонам здания.
РУ 3-20 кВ, к которым присоединены ВЛ, должны быть защищены РВ или ОПН, установленными на шинах или у трансформаторов. РВ или ОПН в одной ячейке с ТН должен быть присоединен до предохранителя ТН.
На подходах к подстанциям ВЛ 3-20 кВ с металлическими и железобетонными опорами установка защитных аппаратов не требуется. Однако при применении на ВЛ 3-20 кВ изоляции, усиленной более чем на 30 % (например, из-за загрязнения атмосферы), на расстоянии 200300 м от ПС и на ее вводе должны быть установлены защитные искровые промежутки.
Следует иметь в виду, что РВ морально и конструктивно устарели и уже сняты с производства, а оставшиеся в эксплуатации РВ практически отслужили свой нормативный срок. В настоящее время происходит их замена на современные ОПН. Таким образом, разрядники в качестве средств защиты от перенапряжений на вновь проектируемых ПС 110–750 кВ не применяются.
Необходимость установки ОПН для защиты оборудования в ячейках линий 330–750 кВ для ограничения коммутационных перенапряжений определяется расчетом и уровнем испытательных напряжений защищаемого оборудования.
Для линий 330 и 500 кВ длиной до 50 км установка ОПН не требуется.
Защитные аппараты от перенапряжений устанавливаются:
в цепи трансформатора (автотрансформатора);
на шинах РУ ПС;
у шунтирующих реакторов.
ОПН устанавливается для защиты трансформаторов, автотрансформаторов и шунтирующих реакторов в цепи их присоединений до выключателя.
2.8. Трансформаторное масло: изоляционные свойства, отбор проб, очистка, осушка и регенерация
Трансформаторное масло применяется в трансформаторах в качестве охлаждающей среды для отвода тепла от проводов обмоток, а также служит изоляцией.
Одной из основных характеристик трансформаторного масла является его вязкость, уменьшающаяся при росте температуры и возрастающая при ее снижении.
Высокая вязкость масла ухудшает работу механизмов систем охлаждения, в связи с чем эта величина является нормируемой и подлежит проверке перед его заливкой в трансформатор.
Изоляционные свойства масел характеризуются показателями, значения которых должны быть не ниже указанных в табл. 2.6.
Таблица 2.6
При эксплуатации изоляционные свойства трансформаторного масла ухудшаются: оно загрязняется, увлажняется, накапливает продукты окисления, в результате чего масло теряет свои химические и электрофизические свойства и стареет.
Кроме того, масло стареет также за счет совместного воздействия на него кислорода воздуха и электрического поля. Окислению способствуют высокие температуры, солнечный свет, наличие растворимых в масле солей металла, являющихся катализаторами окисления.
При наличии электрического поля в масле доля влаги растет по сравнению с наличием влаги при отсутствии электрического поля. Известно, что капли влаги и частицы загрязнений располагаются в электрическом поле вдоль его силовых линий, что приводит к резкому снижению электрической прочности масла.
Очистка масла от механических примесей и влаги осуществляется центрифугированием и фильтрованием через бумажные фильтры. Эффективная очистка получается при использовании центрифуги в комбинации с фильтр-прессом. Этот способ нашел широкое применение при очистке масла в трансформаторах до 110 кВ. В трансформаторах 220 кВ и выше, где к маслу предъявляются повышенные требования в части содержания газов, очистка производится в процессе ремонта; при этом одновременно осуществляются процессы сушки, фильтрации и дегазации масла, а при необходимости и насыщение его азотом (инертным газом).
В настоящее время получил распространение способ осушки масла при помощи цеолитов, которые по своему составу являются водными алюмосиликатами кальция или натрия. Они содержат огромное количество пор с разными молекулами. При фильтровании масла через слой высушенного цеолита находящаяся в масле влага проникает в поры и в них удерживается. Отработанные цеолиты восстанавливаются в стационарных установках продувкой горячим воздухом.
Регенерация представляет собой восстановление окисленного масла, то есть удаление из него продуктов старения. На практике применяется регенерация эксплуатационных масел с кислотным числом, не превышающим 0,3–0,4 мг КОН/г масла.
Для регенерации применяют различного рода адсорбенты естественного и искусственного происхождения. Восстанавливающие свойства адсорбентов основаны на способности за счет действия сил межмолекулярного притяжения осаждать на их поверхности продукты старения.
В качестве естественных адсорбентов применяются отбеливающая земля «зикеевская опока», искусственных — крупнопористый (КСК) и мелкопористый (КСМ) силикагель. Иногда применяется активный оксид алюминия, обладающий адсорбционной способностью по отношению к кислым продуктам старения масла.
При регенерации масло прокачивается через наполненный адсорбентом бак-адсорбер.
Наряду с перечисленными выше применяются специальные устройства для защиты масла в трансформаторах, такие, например, как расширитель трансформатора или воздухоочистительные фильтры.
Расширитель трансформатора, помимо основной функции по компенсации изменения объема масла в масляной системе трансформатора вследствие колебания температуры, позволяет также уменьшить площадь открытой поверхности масла, соприкасающейся с воздухом, что снижает степень окисления, увлажнения и загрязнения масла. Влага и механические примеси, попадая в расширитель из воздуха, осаждаются в его нижней части, откуда удаляются при ремонте трансформатора.
Воздухоочистительные фильтры устанавливают на опускных («дыхательных») трубах расширителей. В нижней части фильтра размещается масляный затвор, работающий по принципу сообщающихся сосудов, который очищает проходящий через него воздух от механических примесей и устраняет прямой контакт масла в расширителе с окружающей средой. Корпус фильтра заполняется силикагелем, осаждающим на своей поверхности частицы воды, содержащиеся в воздухе. С понижением температуры трансформатора объем масла в нем уменьшается, вследствие чего в расширителе создается разрежение и изменяется соотношение уровней масла в затворе. Когда уровень масла во внешней полости затвора упадет настолько, что обнажится край затворного цилиндра, порция атмосферного воздуха пройдет через затвор и далее через поглотитель влаги, попадая в расширитель. При нагревании трансформатора масло начнет оказывать давление на воздушную подушку и в расширителе процесс пойдет в обратном направлении.
Воздухоосушающая способность фильтра определяется визуально по изменению цвета индикаторного силикагеля с голубого на розовый. Розовый цвет силикагеля свидетельствует о его увлажнении и необходимости замены всего силикагеля.
Срок службы силикагеля в воздухоочистительных фильтрах зависит от объема масла в трансформаторе и колеблется от 1 до 2 лет. Замена масла в масляных затворах производится через 2–3 года.
Для непрерывной регенерации масла в трансформаторах широко применяются адсорбционные и термосифонные фильтры, которые выполняют в виде металлических цилиндров, заполненных сорбентом, поглощающим продукты окисления и влагу из циркулирующего через них масла.
Адсорбционные фильтры применяют в системах охлаждения ДЦ и Ц , где обеспечивается принудительная прокачка масла через фильтры.
Термосифонные фильтры применяют в системах охлаждения М и Д , где масло перемещается сверху вниз вследствие разности плотностей нагретого и охлажденного масла.
Сорбентом в этих фильтрах служит силикагель КСК или активный оксид алюминия. Замена сорбента производится после того, как кислотное число превысит 0,1–0,12 мг КОН/г масла.
Для устранения контакта масла в расширителе трансформатора с атмосферным воздухом и предотвращения тем самым загрязнения и окисления масла применяется азотная защита. В качестве такой защиты на практике наиболее часто применяется система низкого давления (давление азота не более 3 кПа) с применением эластичной емкости.
Основным элементом системы является эластичный резервуар, выполненный из резинотканевой пластины (газонепроницаемый химически стойкий материал) и соединяемый газопроводом с расширителем трансформатора. Система заполняется азотом, давление которого незначительно превышает нормальное атмосферное давление при всех температурных изменениях уровня масла в расширителе. При нагреве трансформатора уровень масла в расширителе поднимается и заполняющий его азот переходит в эластичный резервуар, объем которого увеличивается. При понижении уровня масла в расширителе азот переходит в него из эластичного резервуара, стенки которого опадают. Газоосушитель служит для поглощения влаги, которая может попасть в газовую систему из масла или изоляции, а также из газового баллона во время подпитки системы азотом.
На ПС с двумя и более трансформаторами применяется групповая азотная защита с питанием от одного эластичного резервуара.
Дегазация масла производится под вакуумом на специальных установках, насыщение азота — продувками. При 3–4 продувках кислород в масле почти полностью замещается азотом. Содержание кислорода в газовом пространстве расширителя должно быть не более 1 %. При большем содержании кислорода азотная защита масла становится неэффективной.
Обслуживание азотной защиты заключается в следующем:
при осмотре устройства проверяется уровень масла в расширителе трансформатора, наполнение эластичных резервуаров азотом, цвет силикагеля в осушителе;
если объем эластичных резервуаров мал и не соответствует уровню масла в расширителе, проверяется внешнее состояние эластичных резервуаров и герметичность соединений всей газовой системы;
при необходимости производится подпитка газовой системы азотом из баллонов. Для этого отключается газовая защита трансформатора, закрывается кран и система через редуктор и кран заполняется азотом из баллонов до тех пор, пока объем эластичного резервуара не станет соответствовать уровню масла в расширителе. Подключение эластичного резервуара к трансформатору производится в обратном порядке. Затем окончательно подключается к трансформатору его газовая защита.
Необходимость в подпитке азотом возникает, как правило, не чаще 1 раза в месяц. При надежной герметичности соединений всех узлов в надмасляном пространстве подпитку азотом производят 1 раз в год.
Пробы азота отбирают через каждые 6 мес. Если в газовой смеси обнаруживается более 3 % кислорода, при открытом вентиле производится 10-минутная продувка надмасляного пространства в расширителе чистым и сухим азотом. Газовая защита выводится из работы на все время продувки.
Доливка масла в трансформатор, имеющий азотную защиту, производится через нижний сливной кран.
Для герметизации масла трансформатора применяется пленочная защита в виде подвижной пленки, помещаемой в расширитель трансформатора и изолирующей масло в расширителе от соприкосновения с атмосферным воздухом. Пленочная защита выполняется в виде эластичного компенсатора, изменяющего свой объем при температурных колебаниях объема масла в трансформаторе, или в виде эластичной мембраны, плавающей на поверхности масла и свободно изгибающейся при изменении объема масла в расширителе. При этом в надмасляном пространстве трансформатора сохраняется нормальное атмосферное давление.
Уровень масла в расширителе контролируется по стрелочному указателю, рычаг которого опирается на поверхность пленки. Трансформатор с пленочной защитой заполняется дегазированным маслом с обязательным периодическим контролем его газосодержания.
Герметичность пленки проверяется при очередном ремонте трансформатора. В случае срабатывания газовой защиты трансформатора должна проводиться и проверка пленочной защиты.
Для увеличения срока службы трансформаторного масла применяются присадки. Нормально очищенное масло в качестве естественных антиокислителей содержит смолы, защищающие масло от окисления в начальный период его эксплуатации. Специальные присадки тормозят процесс окисления масла. Присадки в зависимости от принципа действия относят к следующим группам:
ингибиторы — антиокислители;
деактиваторы — вещества, уменьшающие каталитическое действие растворимых в масле соединений, содержащих металлы;
пассиваторы — вещества, образующие на металле пленку, предохраняющую от каталитического действия металлов.
Широкое применение нашли такие присадки, как ионол и антраниловая кислота.
Ионол представляет собой типичный ингибитор, который будучи введенным в масло в количестве 0,2 % от массы масла, замедляет образование осадка в очищенных маслах и тормозит рост tgφ.
Антраниловая кислота представляет собой присадку с многофункциональным действием. Это сильный пассиватор и активатор, но слабый ингибитор. При введении в масло 0,02-0,05 % антраниловой кислоты коррозия меди и железа практически прекращается.
Наиболее эффективным является одновременное применение ионола и антраниловой кислоты.
Для обслуживания маслонаполненного оборудования должны быть организованы централизованные масляные хозяйства, оборудованные резервуарами для хранения масла, насосами, оборудованием для очистки, осушки и регенерации масла, передвижными маслоочистительными и дегазационными установками, емкостями для транспортировки масла.
В соответствии с требованиями ПУЭ, указатели уровня и температуры масла маслонаполненных трансформаторов и аппаратов и другие указатели, характеризующие состояние оборудования, должны быть расположены таким образом, чтобы были обеспечены удобные и безопасные условия для доступа к ним и наблюдения за ними без снятия напряжения (например, со стороны прохода в камеру).
Для отбора проб масла расстояние от уровня пола или поверхности земли до крана трансформатора или аппарата должно быть не менее 0,2 м или должен быть предусмотрен соответствующий приямок.
Для предотвращения растекания масла и распространения пожара при повреждениях маслонаполненных силовых трансформаторов (реакторов) с количеством масла более 1 т в единице должны быть выполнены маслоприемники, маслоотводы и маслосборники с соблюдением следующих требований ПУЭ:
габариты маслоприемника должны выступать за габариты трансформатора (реактора) не менее чем на 0,6 м при массе масла до 2 т; 1 м при массе от 2 до 10 т; 1,5 м при массе от 10 до 50 т; 2 м при массе более 50 т. При этом габарит маслоприемника может быть принят меньше на 0,5 м со стороны стены или перегородки, располагаемой от трансформатора (реактора) на расстоянии менее 2 м;
объем маслоприемника с отводом масла следует рассчитывать на единовременный прием 100 % масла, залитого в трансформатор (реактор). Объем маслоприемника без отвода масла следует рассчитывать на прием 100 % объема масла, залитого в трансформатор (реактор), и 80 % воды от средств пожаротушения из расчета орошения площадей маслоприемника и боковых поверхностей трансформатора (реактора) с интенсивностью 0,2 л/с-м2 в течение 30 мин;
устройство маслоприемников и маслоотводов должно исключать переток масла (воды) из одного маслоприемника в другой, растекание масла по кабельным и другим подземным сооружениям, распространение пожара, засорение маслоотвода и забивку его снегом, льдом и т. п.;
маслоприемники под трансформаторы (реакторы) с объемом масла до 20 т допускается выполнять без отвода масла. Маслоприемники без отвода масла должны выполняться заглубленной конструкции и закрываться металлической решеткой, поверх которой должен быть насыпан слой чистого гравия или промытого гранитного щебня толщиной не менее 0,25 м, либо непористого щебня другой породы с частицами от 30 до 70 мм. Уровень полного объема масла в маслоприемнике должен быть ниже решетки не менее чем на 50 мм;
маслоприемники с отводом масла могут выполняться как заглубленными, так и незаглубленными (дно на уровне окружающей планировки). При выполнении заглубленного маслоприемника устройство бортовых ограждений не требуется, если при этом обеспечивается выполнение приведенных выше требований к объему маслоприемника.
Маслоприемники с отводом масла могут выполняться:
с установкой металлической решетки на маслоприемнике, поверх которой насыпан гравий или щебень толщиной слоя 0,25 м;
без металлической решетки с засыпкой гравия на дно маслоприемника толщиной слоя не менее 0,25 м.
