Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕМА 4. ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ РАЗЛИЧИЙ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
270.34 Кб
Скачать

Тема 4. Параметрические критерии различий

    1. Алгоритмы параметрических критериев.

Параметрические критерии применяются для выборок с нормальным законом распределения. Формула расчета этих критериев содержат параметры выборки: среднее, дисперсии и др. Поэтому они называются параметрическими. Нормальность закона распределения должна быть статистически доказана с помощью одного из критериев согласия: критерий Пирсона, F-критерия Фишера, -критерия Колмогорова и др.

В ряде случаев параметрические критерии мощнее непараметрических критериев. У последних выше вероятность возникновения ошибки второго рода – принятия ложной нулевой гипотезы.

К параметрическим методам относятся следующие:

– Критерий Стьюдента

– Критерий Фишера

– Методы однофакторного анализа

– Методы двухфакторного анализа

4.2.Критерий Стьюдента

Критерий позволяет оценивать различия средних значений выборок, имеющих нормальное распределение.

Описание критерия.

Критерий применим для сравнения средних значений двух выборок полученных до и после воздействия некоторого фактора.

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент).

Зависимые(связанные) и независимые (несвязанные) выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми. Примеры зависимых выборок:

  • пары близнецов,

  • два измерения какого-либо признака до и после экспериментального воздействия,

  • мужья и жёны

  • и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми, например:

  • мужчины и женщины,

  • психологи и математики.

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

4.2.1.Двухвыборочный t-критерий для независимых выборок

Для двух несвязанных выборок(наблюдения не относятся к одной и той же группе объектов ) возможны два варианта расчета:

    • когда дисперсии известны

    • когда дисперсии неизвестны, но равны друг другу.

  1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.

  2. Рассчитывается средне арифметические значения и для каждой выборки по формуле где – значение i-го результата наблюдения.

  3. Рассчитывается - эмпирическое значение критерия Стьюдента:

Где

квадратичного отклонения. Здесь и – оценки дисперсий.

Рассмотрим сначала равночисленные выборки . В этом случае

В случае наравночисленных выборок , выражение

В обоих случаев подсчет числа степеней свободы осуществляется по формулам

Понятно, что при численном равенстве выборок

  1. Эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.

Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Пример.

Психолог измерял время сложной сенсомоторной реакции выбора (в мс) в контрольной и экспериментальных группах. В экспериментальную группу (Х) входило 9 спортсменов высокой квалификации. Контрольной группой (Y) являлись 8 человек, активно не занимающиеся спортом. Психолог приверяет гипотезу о том , что средняя скорость сложной сенсомоторной реакции выбора у спортсменов выше, чем та же величина у людей, не занимающихся спортом.

Группы

Отклонения от среднего

Квадраты отклонений

X

Y

1

504

580

-22

-58

484

3368

2

560

692

34

54

1156

2916

3

420

700

-106

62

11236

3844

4

600

621

74

-17

5476

289

5

580

640

54

-2

2916

4

6

530

561

4

-77

16

5929

7

490

680

-36

42

1296

1764

8

580

630

54

-8

2916

64

9

470

-

-56

-

3136

-

Сумма

4734

5104

0

0

28632

18174

Среднее

526

638

Cредне арифметические значения X и У: , в контрольной группе .

Тогда

Число степеней свободы k=9+8-2=15

По таблице приложения для данного числа степеней находим

Строим ось значимости

Зона неопределенности

Зона незначимости

Зона значимости

Т.о. обнаруженные психологом различия между экспериментальной и контрольной группами значимы более чем на 0,1% уровне или иначе говоря средняя скорость сложной сенсомоторной реакции выбора в группе спортсменов существенно выше чем в группе людей активно не занимающихся спортом.

В терминах статистических гипотез это утверждение звучит так : гипотеза Н0 о сходстве отклоняется и на 0,1% уровне значимости принимается альтернативная гипотеза Н1 – о различии между экспериментальной и контрольной группой.

4.2.2. Двухвыборочный t-критерий для зависимых(связанных) выборок

Под связанными выборками понимаются наблюдения для одной группы объектов, причем все наблюдения попарно связаны с каждый объектом исследования и характеризуют его состояние до воздействия и после воздействия некоторого фактора.

Гипотезы

: среднее значение в выборке не отличается от нуля.

: среднее значение в выборке отличается от нуля.

Данные в выборке измерены по шкале интервалов или по шкале отношений

Сравниваемые данные должны иметь нормальный закон распределения

Сравниваемых выборок две для оной группы объектов наблюдения, причем имеет место парность наблюдений в выборках.

  1. Предварительно проверяется нормальность закона распределения по одному из критериев согласия.

  2. Рассчитывается (i=1..n) – попарные разности вариант, и результаты измерений для i-го объекта до и после воздействия некоторого фактора. Величину будем считать независимой для разных объектов и нормально распределенной

  3. Рассчитываются (лучше в табличной форме): сумма попарных разностей и вспомогательные параметры и .

  4. Рассчитывается - эмпирическое значение критерия степенями свободы по формуле

Где n – численность выборки.

5.Найденное эмпирическое значение критерия Стьюдента сравнивается с критическим значением (по таблице 1 приложения) для данного числа степеней свободы.

Нулевая гипотеза при заданном уровне значимости принимается, если эмпирическое значение .

Критическое значение для выбранной вероятности и заданного числа степеней свободы можно найти по встроенной в Excel функции СТЬЮДРАСПОБР.

Пример.

Психолог предположил, что в результате тренировки, время решения эквивалентных задач (т.е. имеющих один и тот же алгоритм решения ) будет значительно уменьшаться. Для проверки гипотезы у восьми испытуемых сравнивалось время решения (в минутах) первой и третьей задачи.

Решение задачи представим в таблице.

Номер испытуемого

1 задача

3 задача

1

4,0

3,0

1

10

2

3,5

3,0

0,5

0,25

3

4,1

3,8

0,3

0,09

4

5,5

2,1

3,4

11,56

5

4,6

4,9

-0,3

0,09

6

6,0

5,3

0,7

0,49

7

5,1

3,1

2,0

4

8

4,3

27

1,6

2,56

Суммы

37,1

27,9

9,2

20,04

Число степеней свободы =8-1=7. По таблице Приложения находим

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]