Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Роль белков в питании Человека.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
111.34 Кб
Скачать

Роль белков в питании Человека

Белки составляют 15-20% массы тела Человека.

Суточная потребность в белке составляет  в среднем 90-100 г. Если быть особенно точным, то по нормам питания России, для не занятых физическим трудом и спортом здоровых мужчин и женщин в возрасте 18-30 лет потребность в белке составляет 0,75-1 г белка в сутки на 1 кг нормальной для данного человека массы тела. Животные белки должны составлять около половины от общего количества белка у взрослых людей и около 60% - у детей. Потребность в белке детей до 1 года составляет 2,2 – 2,9 г/кг.

Биологическая  функция белков  заключается в следующем:

1. Структурная.

а) белки формируют основное вещество соединительной ткани – коллаген, эластин, кератин и протеогликаны;

б) непосредственно участвуют в построении мембран и скелета клетки: спектрин – основной белок цитоскелета эритроцитов, гликофорин – фиксирует спектрин на поверхности;

в) участвуют в создании органелл – рибосом.

2. Гормональная.

Часть гормонов являются белками, например, инсулин, глюкагон.

3. Ферментативная.

Ферменты являются белками и участвуют в реакциях обмена веществ организма.

4. Рецепторная.

Белки принимают участие  в избирательном связывании гормонов, биологически активных веществ и медиаторов на поверхности или внутри клетки.

5. Транспортная.

Белки участвуют в переносе веществ в крови. Например, липопротеины осуществляют перенос жира, гемоглобин - транспорт кислорода, трансферрин – транспорт железа.

6. Резервная.

У человека депо белка в организме нет. Для обеспечения энергией организм  в первую очередь использует  углеводы и жиры, а белок бережёт для других целей. При длительном голодании используются белки мышц, печени, эпителиальных тканей и лимфоидных органов. Окисление 1 г белка даёт примерно 4 ккал или 16,7 кДж.

7. Сократительная.

Ряд внутриклеточных белков предназначен для изменения формы клетки, движения самой клетки или её органелл, например, белки актин, миозин, тубулин.

8. Защитная.

Белки крови иммуноглобулины обладают защитной функцией при инфекциях, при повреждении тканей помогают белки свёртывающей системы крови, а механическую защиту и поддержку клеток осуществляют протеогликаны.

Итак, мы поняли, что роль белка в питании Человека огромна.Чем опасно белковое недоедание?

Если организм длительное время будет испытывать недостаточное поступление белка или белки пищи будут обладать низкой биологической ценностью, то это чревато развитием серьёзных заболеваний. Возникает снижение массы тела, замедление интенсивности роста и психического развития детей, ослабление иммунитета. Серьёзно нарушаются функции печени, поджелудочной железы, кроветворных органов.

Известный факт, что недополучение белка в детстве сказывается потом в течение всей жизни. Это проявляется снижением умственных способностей, хрупкостью костей, частыми простудными заболеваниями.

У взрослых низкое содержание белка в рационе, кроме того, опасно развитием ишемической болезни сердца,  может даже приводить к  маразму.

Белковая недостаточность лёгкой и средней степени тяжести может наблюдаться в следующих ситуациях:

1) у строгих вегетарианцев, употребляющих только растительную пищу ограниченного ассортимента;

2) нерациональное питание у детей и подростков;

3) неудовлетворённая  повышенная потребность в белках при беременности и кормлении ребёнка грудью;

4)  при нерациональной диетотерапии;

5) у алкоголиков и наркоманов;

6)  при болезнях органов пищеварения, когда нарушено переваривание и всасывания белка;

7) при повышенных потерях белка –  при инфекционных  заболеваниях, тяжёлых травмах и операциях, обширных ожогах, злокачественных новообразованиях, болезнях почек, щитовидной железы, массивных кровопотерях.

Потребление белка увеличивают по следующим показаниям:

1. Занятия силовыми видами спорта (тяжёлая атлетка, борьба, бодибилдинг).

2. Период выздоровления после тяжёлых  инфекционных заболеваний, обширных хирургических вмешательствах и травм.

3. Ожоговая болезнь.

4. Переломы костей.

5. Заболевания органов пищеварения – хронические энтероколиты, панкреатиты, состояния после резекции тонкой кишки и желудка.

6. Заболевания почек с нефротическим синдромом.

7. Нагноительные заболевания лёгких.

8. Туберкулёз.

9. Злокачественные опухоли.

10. Кровопотеря.

11. Приём кортикостероидных и анаболических гормонов.

В таких случаях потребление белка может достигать 1,2 -1,5 г/кг, но не должно превышать 120-130 г в сутки.

Отметим, что качество пищевого белка определяется его биологической ценностью и усвояемостью. Биологическая ценность зависит от содержания и соотношения входящих в состав белков незаменимых аминокислот - триптофана, лейцина, изолейцина, валина, треонина, лизина, метионина, фенилаланина. Наибольшей биологической ценностью обладают белки животного происхождения – яиц, мяса, молока, рыбы. Белки растительных продуктов менее ценны, так как являются дефицитными по одной или нескольким аминокислотам. Например, белки злаковых культур содержат недостаточное количество лизина и треонина, а белки картофеля и бобовых – метионина и цистеина. Среди растительных продуктов  высоким содержанием незаменимых аминокислот отличаются соя, фасоль и горох. Достаточно близко приближаются по своему аминокислотному составу к полноценным белки гречневой и овсяной круп.

Нужно сказать, что усвояемость белков растительного происхождения ниже, чем животных, потому что они заключены в плотные оболочки из клетчатки, что заметно затрудняет проникновение пищеварительных ферментов внутрь клетки. Белки животного происхождения усваиваются организмом почти полностью.

Усвояемость белков пищи:

1) белки  яиц и молока  - 96-98%

2) белки  мяса и рыбы – 93-95%.

3) белки овощей – 80%

4) белки круп – 80 %

5) бобовых – 70%

6) белки высших грибов – 20-40%

Лучшему усвоению белков способствует кислая среда желудка. У людей с пониженной кислотностью желудочного сока после обильного приёма белковых блюд могут наблюдаться тяжесть под ложечкой и расстройства стула.

Наиболее быстро перевариваются белки молочных продуктов и рыбы, затем белки мяса ( при этом  быстрее перевариваются белки говядины, чем свинины и баранины), хлеба и круп (быстрее перевариваются белки пшеничного хлеба из муки высших сортов и манной крупы). Белки рыбы перевариваются быстрее, чем белки мяса, потому что в рыбе меньше соединительной ткани.

Поговорим теперь о том, чем опасно высокое содержание  белка в суточном рационе.

Длительное избыточное потребление белка может приводить:

1) к  гипертрофии печени и почек;

2) к накоплению в организме производных мочевой кислоты (пуринов и уратов), способствующих развитию подагры и почечно-каменной болезни;

3) избыток белка угнетает кишечную микрофлору и усиливает процессы гниения в кишечнике, провоцирует развитие дисбактериоза;

4) чрезмерно высокое содержание белка в рационе маленьких детей приводит  к замедлению скорости роста, изменению в составе мочи и нарушениям нервно-психического развития.

Так что всё хорошо в меру.

Белок обязательно ограничивают:

1) при остром нефрите

2) при почечной и печёночной недостаточности

3) при подагре.

В этих ситуациях даже возможно временное полное исключение белка из рациона.

ЛЕКЦИЯ № 10. Значение белков и жиров в питании человека

Биологическая роль белков

Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма, справедливо назван протеином, показывающим первую его роль в питании. Роль белков в питании человека трудно переоценить. Сама жизнь является одним из способов существования белковых тел. Биологическая роль белков

Белок можно отнести к жизненно важным пищевым веществам, без которых невозможны жизнь, рост и развитие организма. Достаточность белка в питании и высокое его качество позволяют создать оптимальные условия внутренней среды для нормальной жизнедеятельности организма, его развития и высокой работоспособности. Белок является главной составной частью пищевого рациона, определяющей характер питания. На фоне высокого уровня белка отмечается наиболее полное проявление в организме биологических свойств других компонентов питания. Белки обеспечивают структуру и каталитические функции ферментов и гормонов, выполняют защитные функции, участвуют в образовании многих важных структур белковой природы: иммунных тел, специфических ?-глобулинов, белка крови пропердина, играющего известную роль в создании естественного иммунитета, участвуют в образовании тканевых белков, таких как миозин и актин, обеспечивающих мышечные сокращения, глобина, входящего в состав гемоглобина эритроцитов крови и выполняющего важнейшую функцию дыхания. Белок, образующий зрительный пурпур (родопсин) сетчатки глаза, обеспечивает нормальное восприятие света, и др.

Следует отметить, что белки определяют активность многих биологически активных веществ: витаминов, а также фосфолипидов, отвечающих за холестериновый обмен. Белки определяют активность тех витаминов, эндогенный синтез которых осуществляется из аминокислот. Например, из триптофана – витамина PР (никотиновая кислота), обмен метионина – связан с синтезом витамина U (метилметионин-сульфоний). Установлено, что белковая недостаточность может привести к недостаточности витамина С и биофлаваноидов (витамина Р). Нарушение в печени синтеза холина (группы витаминоподобных веществ) приводит к жировой инфильтрации печени.

При больших физических нагрузках, а также при недостаточном поступлении жиров и углеводов белки участвуют в энергетическом обмене организма.

Белки рациона определяют такие состояния, как алиментарная дистрофия, маразм, квашиоркор. Квашиоркор означает «отнятый от груди ребенок». Им заболевают дети, отнятые от груди и переведенные на углеводистое питание с резкой недостаточностью животного белка. Квашиоркор вызывает как стойкие необратимые изменения конституционального характера, так и изменения личности.

Наиболее тяжелые последствия в состоянии здоровья, нередко на всю жизнь, оставляет такой вид недостаточности питания, как алиментарная дистрофия, чаще всего возникающая при отрицательном энергетическом балансе, когда в энергетические процессы включаются не только пищевые химические вещества, поступающие с пищей, но и собственные, структурные белки организма. В алиментарной дистрофии выделяют отечную и безотечную формы с явлениями или без явлений витаминной недостаточности.

Может сложиться впечатление, что заболевания алиментарного характера возникают только при недостаточном поступлении белка в организм. Это не совсем так! При избыточном поступлении белка у детей первых трех месяцев жизни появляются симптомы дегидратации, гипертермии и явления обменного ацидоза, что резко увеличивает нагрузку на почки. Обычно это возникает, когда при искусственном вскармливании используют неадаптированные молочные смеси, негуманизированные типы молока.

Обменные нарушения в организме могут появиться и при несбалансированности аминокислотного состава поступающих белков.

Заменимые и незаменимые аминокислоты, значение и потребность в них

В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.

1. Алифатические аминокислоты:

а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;

б) оксимоноаминокарбоновые – серин, треонин;

в) моноаминодикарбоновые – аспаргиновая, глютаминовая;

г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;

д) диаминомонокарбоновые – аргинин, лизин;

е) серосодержащие – гистин, цистеин, метионин.

2. Ароматические аминокислоты: фенилаланин, тирозин.

3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.

Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.

Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.

Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.

Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.

Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.

Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:

1) белки рыбы и молока;

2) белки мяса;

3) белки хлеба и круп.

Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.

Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.

Биологическая роль незаменимых аминокислот

Гистидин играет важную роль в образовании гемоглобина крови. Недостаток гистидина приводит к снижению уровня гемоглобина в крови. При декарбоксилировании гистидин превращается в гистамин – вещество, имеющее большое значение в расширении сосудистой стенки и ее проницаемости, влияет на выделение желудочного пищеварительного сока. Недостаток гистидина, так же как и избыток, ухудшает условно-рефлекторную деятельность.

Валин – физиологическая роль данной НАК недостаточно ясна. При недостаточном поступлении у лабораторных животных отмечаются расстройства координации движений, гиперестезия.

Изолейцин наряду с лейцином входит в состав всех белков организма (за исключением гемоглобина). В плазме крови содержится 0,89 мг% изолейцина. Отсутствие изолейцина в пище приводит к отрицательному азотистому балансу, к замедлению процессов роста и развития.

Лизин относится к одной из наиболее важных незаменимых аминокислот. Он входит в триаду аминокислот, особенно учитываемых при определении общей полноценности питания: триптофан, лизин, метионин. Оптимальное соотношение этих аминокислот составляет: 1 : 3 : 2 или 1 : 3 : 3, если взять метионин + цистин (серосодержащие аминокислоты). Недостаток в пище лизина приводит к нарушению кровообращения, снижению количества эритроцитов и уменьшению в них гемоглобина. Также отмечаются нарушение азотистого баланса, истощение мышц, нарушение кальцификации костей. Происходит также ряд изменений в печени и легких. Потребность в лизине составляет 3—5 г в сутки. В значительных количествах лизин содержится в твороге, мясе, рыбе.

Метионин играет важную роль в процессах метилирования и трансметилирования. Это основной донатор метильных групп, которые используются организмом для синтеза холина (витамина группы В). Метионин относится к липотропным веществам. Он оказывает влияние на обмен жиров и фосфолипидов в печени и таким образом играет важную роль в профилактике и лечении атеросклероза. Установлена связь метионина с обменом витамина В12 и фолиевой кислотой, которые стимулируют отделение метильных групп метионина, обеспечивая таким образом синтез холина в организме. Метионин имеет большое значение для функции надпочечников и необходим для синтеза адреналина. Суточная потребность в метионине составляет около 3 г. Основным источником метионина следует считать молоко и молочные продукты: в 100 г казеина содержится 3 г метионина.

Триптофан, так же как и треонин, – фактор роста и поддержания азотистого равновесия. Участвует в образовании сывороточных белков и гемоглобина. Триптофан необходим для синтеза никотиновой кислоты. Установлено, что из 50 мг триптофана образуется около 1 мг ниацина, в связи с чем 1 мг ниацина или 60 мг триптофана могут быть приняты как единый «ниациновый эквивалент». Суточная потребность в никотиновой кислоте в среднем определена в количестве 14—28 ниациновых эквивалентов, а в расчете на сбалансированную мегакалорию – 6,6 ниациновых эквивалентов. Потребность организма в триптофане составляет 1 г в сутки. В продуктах питания триптофан распределен неравномерно. Так, например, 100 г мяса эквивалентно по содержанию триптофана 500 мл молока. Из растительных продуктов необходимо выделить бобовые. Очень мало триптофана в кукурузе, поэтому в тех районах, где кукуруза является традиционным источником питания, следует проводить профилактические осмотры для определения обеспеченности организма витамином PP.

Фенилаланин связан с функцией щитовидной железы и надпочечников. Он дает ядро для синтеза тироксина – основной аминокислоты, образующей белок щитовидной железы. Из фенилаланина может синтезироваться тирозин и далее адреналин. Однако обратного синтеза из тирозина-фенилаланин не происходит.

Существуют стандарты сбалансированности НАК, разработанные с учетом возрастных данных. Для взрослого человека (г/сутки): триптофана – 1, лейцина 4—6, изолейцина 3—4, валина 3—4, треонина 2—3, лизина 3—5, метионина 2—4, фенилаланина 2—4, гистидина 1,5—2.

Заменимые аминокислоты

Потребность организма в заменимых аминокислотах удовлетворяется в основном за счет эндогенного синтеза, или реутилизации. За счет реутилизации образуется 2/3 собственных белков организма. Ориентировочная суточная потребность взрослого человека в основных заменимых аминокислотах следующая (г/сутки): аргинин – 6, цистин – 2—3, тирозин – 3—4, аланин – 3, серин – 3, глутаминовая кислота – 16, аспирагиновая кислота – 6, пролин – 5, глюкокол (глицин) – 3.

Заменимые аминокислоты выполняют в организме весьма важные функции, причем некоторые из них (аргинин, цистин, тирозин, глутаминовая кислота) играют физиологическую роль не меньшую, чем незаменимые (эссенциальные) аминокислоты.

Интересны некоторые аспекты использования заменимых аминокислот в пищевой промышленности, например глутаминовой кислоты. В наибольших количествах она содержится только в свежих пищевых продуктах. По мере хранения или консервирования пищевых продуктов глутаминовая кислота в них разрушается, и продукты теряют свойственные им ароматы и вкус. В промышленности чаще используют натриевую соль глутаминовой кислоты. В Японии глутаминат натрия называют «Аджино мотто» – сущность вкуса. Пищевые продукты опрыскивают 1,5—5%-ным раствором глутамината натрия, и они долго сохраняют аромат свежести. Поскольку глутаминат натрия обладает антиокислительными свойствами, то пищевые продукты могут храниться более длительные сроки.

Потребность в белках зависит от возраста, пола, характера трудовой деятельности, климатических и национальных особенностей и т. д. Исследованиями установлено, что азотистое равновесие в организме взрослого человека поддерживается при поступлении не менее 55—60 г белка, однако эта величина не учитывает стрессовые ситуации, болезни, интенсивные физические нагрузки. В связи с этим в нашей стране установлена оптимальная потребность взрослого человека в белке 90—100 г/сутки. При этом в пищевом рационе за счет белка должно обеспечиваться в среднем 11—13 % общей его энергетической ценности, а в процентном отношении белок животного происхождения должен составлять не менее 55 %.

Американскими и шведскими учеными установлены ультраминимальные нормы потребления белков на основании эндогенного распада тканевых белков при безбелковых диетах: 20—25 г/сутки. Однако такие нормы при постоянном использовании не удовлетворяют потребности организма человека и не обеспечивают нормальной работоспособности, так как при распаде тканевых белков образующиеся аминокислоты, используемые в дальнейшем для ресинтеза белка, не могут обеспечить должную замену животного белка, поступающего с пищей, и это приводит к отрицательному азотистому балансу.

Энергетическая потребность людей первой группы интенсивности труда (группа умственного труда) составляет 2500 ккал. 13 % от этой величины составляет 325 ккал. Таким образом, потребность в белке у студентов составляет приблизительно 80 г (325 ккал: 4 ккал = 81,25 г) белка.

У детей потребность в белках определяется возрастными нормами. Количество белка из-за преобладания в организме пластических процессов на 1 кг массы тела увеличено. В среднем эта величина составляет 4 г/кг у детей от 1 до 3 лет жизни, 3,5 —4 г/кг для детей 3—7 лет, 3 г/кг – для детей 8—10 лет и детей старше 11 лет – 2,5—2 г/кг, в то время как в среднем у взрослых 1,2—1,5 г/кг в сутки.

Значение жиров в питании здорового человека

Жиры относятся к основным питательным веществам и являются обязательным компонентом в сбалансированном питании.

Физиологическое значение жира весьма многообразно. Жиры является источником энергии, превосходящей энергию всех других пищевых веществ. При сгорании 1 г жира образуется 9 ккал, тогда как при сгорании 1 г углеводов или белков – по 4 ккал. Жиры участвуют в пластических процессах, являясь структурной частью клеток и их мембранных систем.

Жиры являются растворителями витаминов А, Е, D и способствуют их усвоению. С жирами поступает ряд биологически ценных веществ: фосфолипиды (лецитин), ПНЖК, стерины и токоферолы и другие биологически активные вещества. Жир улучшает вкусовые свойства пищи, а также повышает ее питательность.

Недостаточное поступление жира приводит к нарушениям в центральной нервной системе ослаблению иммунобиологических механизмов, дегенеративным нарушениям функции кожи, почек, органа зрения и др.

В составе жира и сопутствующих ему веществ выявлены эссеециальные, жизненно необходимые незаменимые компоненты, в том числе липотропного, антиатеросклеротического действия (ПНЖК, лецитин, витамины А, Е и др.).

Жир оказывает влияние на проницаемость клеточной стенки, состояние ее внутренних элементов, что способствует сбережению белка. В целом от уровня сбалансированности жира с другими пищевыми веществами зависят интенсивность и характер многих процессов, протекающих в организме, связанных с обменом и усвоением пищевых веществ.

По химическому составу жиры представляют собой сложные комплексы органических соединений, основными структурными компонентами которых являются глицерин и жирные кислоты. Удельный вес глицерина в составе жира незначителен и составляет 10 %. Основное значение, определяющее свойства жиров, имеют жирные кислоты. Они подразделяются на предельные (насыщенные) и непредельные (ненасыщенные).

Состав жиров

Предельные (насыщенные) жирные кислоты чаще встречаются в составе животных жиров. Высокомолекулярные насыщенные кислоты (стеариновая, арахиновая, пальмитиновая) обладают твердой консистенцией, низкомолекулярные (масляная, капроновая и др.) – жидкой. От молярной массы зависит и температура плавления: чем выше молярная масса насыщенных жирных кислот, тем выше температура их плавления.

По биологическим свойствам предельные жирные кислоты уступают непредельным. С предельными (насыщенными) жирными кислотами связывают представления об отрицательном их влиянии на жировой обмен, на функцию и состояние печени, а также развитие атеросклероза (за счет поступления холестерина).

Непредельные (ненасыщенные) жирные кислоты широко представлены во всех пищевых жирах, особенно в растительных маслах. Наиболее часто в составе пищевых жиров встречаются непредельные кислоты с одной, двумя и тремя двойными ненасыщенными связями. Это обуславливает их способность вступать в реакции окисления и присоединения. Реакции присоединения водорода (насыщения) используют в пищевой промышленности при получении маргарина. Легкая окисляемость ненасыщенных жирных кислот приводит к накоплению окисленных продуктов и последующей их порче.

Типичный представитель ненасыщенных жирных кислот с одной связью – олеиновая кислота, которая находится почти во всех животных и растительных жирах. Она играет важную роль в нормализации жирового и холестеринового обмена.

Полиненасыщенные (эссенциальные) жирные кислоты

К ПНЖК относят жирные кислоты, содержащие несколько двойных связей. Линолевая имеет две двойные, линоленовая – три, а арахидоновая – четыре двойные связи. Высоконепредельные ПНЖК рассматриваются некоторыми исследователями как витамин F.

ПНЖК принимают участие в качестве структурных элементов высокоактивных в биологическом отношении комплексов – фосфолипидов и липопротеидов. ПНЖК – необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и др.

Синтез жирных кислот, необходимых для структурных липидов организма, происходит преимущественно за счет ПНЖК пищи. Биологическая роль линоленовой кислоты заключается в том, что она предшествует в организме биосинтезу арахидоновой кислоты. Последняя в свою очередь предшествует образованию простагландинов – тканевых гормонов.

Установлена важная роль ПНЖК в холестериновом обмене. При недостаточности ПНЖК происходит этерификация холестерина с насыщенными жирными кислотами, что способствует формированию атеросклеротического процесса.

При недостатке ПНЖК снижаются интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, появляется склонность к возникновению тромбоза коронарных сосудов. ПНЖК оказывают нормализующее действие на клеточную стенку кровеносных сосудов, повышая ее эластичность и снижая проницаемость.

ПНЖК являются эссенциальными несинтезируемыми веществами, но превращение одних жирных кислот в другие возможно.

Оптимальной в биологическом отношении формулой сбалансированности жирных кислот в жире может служить следующее соотношение: 10 % ПНЖК, 30 % насыщенных жирных кислот и 60 % мононенасыщенной (олеиновой) кислоты.

Суточная потребность в ПНЖК при сбалансированном питании составляет 2—6 г, что обеспечивается 25—30 г растительного масла.

Фосфолипиды – биологически активные вещества, входящие в структуру клеточных мембран и участвующие в транспорте жира в организме. В молекуле фосфолипидов глицерин этерифицирован ненасыщенными жирными кислотами и фосфорной кислотой. Типичным представителем фосфолипидов в продуктах питания является лецитин, хотя схожим биологическим действием обладают кефалин и сфингомиелин.

Фосфолипиды представлены в нервной ткани, ткани мозга, сердца, печени. Фосфолипиды синтезируются в организме в печени и почках.

Лецитин участвует в регулировании холестеринового обмена, способствуя его расщеплению и выведению из организма. В норме его содержание в крови 150—200 мг%, а коэффициент лецитин / холестерин равен 0,9—1,4. Потребность в фосфолипидах составляет для взрослого человека 5 г в сутки и удовлетворяется за счет эндогенных фосфолипидов, образующихся из предшественников полной деградации.

Фосфолипиды особенно важны в питании пожилых людей, так как обладают выраженным липотропным, антиатеросклеротическим действием.

Стерины – гидроароматические спирты сложного строения, относящиеся к группе неомыляемых веществ нейтрального характера. Содержание в животных жирах – зоостерины – 0,2—0,5 г на 100 г продукта, в растительных – фотостерины – 6,0—17,0 г на 100 г продукта.

Фитостерины играют важную роль в нормализации холестеринового и жирового обмена. Их представителями являются ситостерины, образующие нерастворимые невсасывающие комплексы с холестерином. Основным источником ?-ситостерина, применяемого с лечебной и профилактической целью при атеросклерозе, являются кукурузное масло (400 мг на 100 г масла), хлопковое (400 мг), соевое, арахисовое, оливковое (по 300 мг) и подсолнечное масло (200 мг).

Из зоостеринов основное значение имеет холестерин. Из продуктов питания больше всего его в головном мозге – 4 %, хотя он широко представлен во всех пищевых продуктах животного происхождения. Холестерин обеспечивает удержание влаги клеткой и придает ей необходимый тургор. Участвует в образовании ряда гормонов, в том числе и половых, участвует в синтезе желчи, а также нейтрализует яды: гемолитические, паразитарные, бактериальные.

Холестерин рассматривают и как фактор, участвующий в формировании и развитии атеросклероза. Однако имеются исследования, выдвигающие здесь на первый план повышенное потребление животных жиров, богатых твердыми, насыщенными жирными кислотами.

Основной биосинтез холестерина происходит в печени и зависит от характера поступающего жира. При поступлении насыщенных жирных кислот биосинтез холестерина в печени повышается и, наоборот, при поступлении ПНЖК – снижается.

В состав жиров входят также витамины A, D, Е, а также пигменты, часть которых обладает биологической активностью (каротин, госсипол и др.).

Потребность в нормировании жиров

Суточная потребность взрослого человека в жирах составляет 80—100 г/сутки, в том числе растительного масла – 25—30 г, ПНЖК – 3—6 г, холестерина – 1 г, фосфолипидов – 5 г. В пище жир должен обеспечить 33 % суточной энергетической ценности рациона. Это для средней зоны страны, в северной климатической зоне эта величина составляет 38—40 %, а в южной – 27—28 %.

Углеводы — основной источник покрытия энергетических затрат организма. Содержатся углеводы главным образом в растительных продуктах. В естественных пищевых продуктах углеводы представлены в виде моно-, ди- и полисахаридов. К моносахаридам относятся глюкоза, фруктоза, галактоза, а также применяющиеся для лечебных (диетических) целей сорбит и ксилит. Последние рекомендуются для лиц с недостаточностью функции поджелудочной железы как не вызывающие повышения уровня сахара крови и не требующие для своего усвоения инсулина. К дисахаридам относятся сахароза, лактоза, мальтоза, целлобиоза.  Полисахаридами являются крахмал, гликоген, клетчатка, пектиновые вещества. Дисахариды и полисахариды распадаются под действием соответствующих ферментов в кишечнике до моносахаридов, всасываются и по воротной вене поступают в печень, где из глюкозы синтезируется гликоген. В печени содержится от 2 до 5% гликогена к ее массе. При небольших физических затратах и обильном введении в организм углеводов с пищей: происходит насыщение печени гликогеном и часть поступающих моносахаридов используется для обновления молекул гликогена, часть — для образования жира, а часть окисляется до конечных продуктов.  Образовавшиеся из углеводов жиры вступают в соединение с белками, образуя липопротеиновый комплекс. Обмен углеводов зависит от активности ферментов, участвующих в обмене жира. Если уровень окислительных процессов в организме невысок, то углеводы легко превращаются в жиры и откладываются в подкожной жировой клетчатке и вокруг внутренних органов. Если же окислительные процессы интенсивные, значительная часть углеводов окисляется до конечных продуктов. Содержание сахара в крови находится в пределах 0,8— 1,2 г/л. Этот уровень поддерживается регулирующим влиянием центральной нервной системы и железами внутренней секреции. Источником сахара крови является гликоген печени. В ней он превращается в фосфорное соединение, из которого путем метаболизма в кровь выделяется глюкоза, разносится по всем органам и тканям, где используется для энергетических нужд, превращаясь в гликоген. При очень больших затратах энергии использование сахара крови происходит быстрее, чем превращение гликогена в глюкозу в печени. В результате уровень сахара крови понижается, наступает гипоглике-мия, появляются головокружение, сердцебиение, обильный пот, в тяжелых случаях гипогликемии может наступить коллапс. Длительный недостаток сахара в крови приводит к сахарному голоданию мозговой ткани, в результате чего может наступить невротический синдром. Противоположное явление наблюдается после приема пищи, богатой сахаром, — алиментарная гипергликемия. Все функционирующие ткани имеют запас гликогена для энергетических нужд, скелетные мышцы содержат 0,3—0,9%, мышца сердца — 0,5%, мозговая ткань — 0,15—0,20% гликогена. Источниками глюкозы являются плоды, фрукты, ягоды, мед. Техническую глюкозу получают путем гидролиза картофельного или кукурузного крахмала. Фруктоза содержится вместе с глюкозой в тех же продуктах. Галактоза входит в состав молочного сахара. Манноза имеется в некоторых фруктах. Источником дисахаридов являются сахарная свекла (12— 18% сахара), сахарный тростник (до 25%), морковь (до 7%). При гидролизе сахара органическими кислотами образуется инвертный сахар, обладающий гигроскопичностью: изделия, содержащие инвертный сахар, не высыхают на воздухе (мармелад, пастила, зефир, варенье). При высокой температуре сахароза полимеризуется и образуется бурая масса — карамель, или «жженый» сахар, который широко используется для подкрашивания кондитерских изделий. Мальтоза (солодовый сахар) в естественных пищевых продуктах содержится в небольшом количестве. Содержание мальтозы повышают искусственно в некоторых продуктах, например в ячмене путем его проращивания (приготовление солода). Солод используется для спиртового брожения в пивоваренной промышленности. Лактоза находится в молоке и легко подвергается молочнокислому брожению ферментами молочнокислых микробов; при этом образуется молочная кислота. В группе углеводов главное значение имеют полисахариды. Они более широко распространены в природе: крахмал и клетчатка являются резервными и опорными веществами растений. Крахмал содержится в листьях растений, зернах, клубнях и корневищах. В зернах пшеницы его накапливается до 60—65%, риса — до 75%, в сухом веществе картофеля — до 75%, хлеба — до 40—50%. Крахмал нерастворим в воде; при нагревании с ней образует коллоидный раствор. Клетчатка, являясь основным компонентом древесных растений и травянистого покрова, составляет основную массу органического вещества на земле. В значительном количестве поступает в организм человека с растительными продуктами. В процессе пищеварения, механически раздражая стенки кишечника, возбуждает перистальтику и тем самым способствует передвижению пищевых масс по кишечному каналу. В кишечник человека не выделяются ферменты, расщепляющие клетчатку, небольшое количество ферментов образуется лишь микрофлорой кишечника, поэтому клетчатка мало усваивается организмом и не имеет значения как источник энергии. [NEXT_PAGE] Потребность организма в углеводах обеспечивается главным образом за счет крахмала и сахара. Основными источниками углеводов являются хлебобулочные и макаронные изделия, крупы, картофель, сахар, кондитерские изделия. Различие в сложности строения углеводов имеет определенное значение в питании, а именно в процессах их превращения и усвоения в организме. Крахмал усваивается медленнее, чем сахар, и не создает гипергликемии. Сахар и особенно моносахариды всасываются чрезвычайно быстро. Глюкоза, например, всасывается через 5—10 мин после введения в желудок. Эти особенности углеводов используются в питании различных групп населения и в клинической практике. Ослабленным больным при нарушении сердечной деятельности для быстрого восстановления обменных процессов вводят глюкозу. У спортсменов при больших затратах мышечной энергии (бег, велосипедные и лыжные гонки на длинные дистанции) наиболее эффективным средством быстрого восстановления энергетических запасов для усиления гликогенолиза в печени является смесь сахара с крахмалом. Соотношение сахара и крахмала в рационе рекомендуется как 1 : 3—4, т. е. 1/з—1/4 от общего количества углеводов должен составлять сахар, а 2/3—3/4 углеводов рациона — крахмал. Общее количество углеводов в рационе рекомендуется в зависимости от энергетических затрат, пола, возраста и других показателей в количестве 250—500 г и более. Вода Вода необходима для нормального обмена веществ в организме. Она составляет около 60% массы организма. Наибольшее количество воды содержится в печени, селезенке, мышцах (70—80% их массы), меньше — в опорных тканях — костной, соединительной. В течение суток человек потребляет около 2500 мл воды, в том числе 1200 мл (48%) в виде жидкости, 1000 мл в составе пищи. Около 300 мл (12%) воды образуется в организме в результате эндогенного окисления пищевых веществ. Вода в организме постоянно обновляется: у взрослого человека за 15 дней, а у ребенка за 3—5 дней происходит обновление всех молекул воды. В обмене воды участвуют почки, легкие, желудочно-кишечный тракт, кожа. Обмен воды зависит также от температуры окружающей среды. При высокой температуре окружающего воздуха значительное количество воды выделяется с потом через кожу — до 4—5 л, в связи с чем повышается потребность в воде. При обычной температуре воздуха через кожу выделяется 300—400 мл воды. Почки являются главным органом регуляции водно-солевого обмена. В зависимости от условий внешней среды и количества выпитой жидкости через почки выделяется от 0,5 до 2,5 л воды в сутки. Значительной активностью по отношению к водно-солевому обмену обладает желудочно-кишечный тракт. Всеми отделами желудочно-кишечного тракта при пищеварении за сутки выделяется около 8 л соков; большая их часть подвергается обратному всасыванию. С экскрементами выводится всего лишь 2% выделившегося объема пищеварительных соков. Поступление жидкости в течение дня в организм должно быть равномерным; несколько больше поступает ее во время обеда (0,5 л в первом блюде, 0,25 л — в третьем и 0,25 л в составе пищевых продуктов). Наиболее богаты водой овощи, фрукты, ягоды, молоко, мясо. В овощах и фруктах содержится 80—90% воды. Витамины Витамины представляют собой низкомолекулярные органические соединения, не синтезируемые в организме или синтезируемые в малых количествах. В организме витамины принимают участие в обмене веществ, оказывают влияние на состояние здоровья, адаптационные способности, трудоспособность, на гармоническое развитие организма в период роста. Наука о витаминах — витаминология — прошла три этапа развития. Первый этап — открытие витаминов как незаменимых факторов питания, выделение их из природных источников, установление химической структуры. Открытие витаминов связано с именем русского врача Н. И. Лунина. В 1880 г. он экспериментально обнаружил наличие в пище незаменимых факторов питания. В 1911 г. польским биохимиком К.  Функом впервые был выделен в чистом виде тиамин (B1). По аналогии с этим амином всю группу веществ назвали жизненно необходимыми аминами — витаминами. Второй этап развития витаминологии характеризовался промышленным синтезом витаминов, так как профилактика массовых гиповитаминозов требовала большого количества витаминов. Третий этап отличается созданием на основе витаминов новых биологически активных веществ — аналогов витаминов, более устойчивых по отношению к ферментам кишечника, коферментов (кокарбоксилаза, коферменты витамина В2 и др.), а также синтезом комплексов витаминов с другими жизненно необходимыми питательными веществами, например аминокислотами. В настоящее время изучены свойства более чем 50 витаминов; около 20 из них участвуют в обменных процессах организма человека. Организован Институт витаминологии и имеется много научно-исследовательских лабораторий, изучающих роль витаминов в обменных процессах организма человека и животных. Большой вклад в развитие учения о витаминах внесли советские ученые А. В. Палладии, Б. А. Лавров, В. В. Ефремов, В. М. Васюточкин, Л. А. Черкес, Б. И. Яновская и др. В основу классификации витаминов положен принцип растворимости их в воде и жирах. В связи с этим витамины делятся на водорастворимые и жирорастворимые. К витаминоподобным .веществам относятся липоевая и оротовая кислоты, витамин U. [NEXT_PAGE] Гиповитаминозы Болезни, возникающие в результате длительного отсутствия в пище витаминов — авитаминозы (цинга, полиневрит, ксеро-фтальмия и др.), уже в течение многих лет не встречаются. Однако гиповитаминозные состояния нередко имеют место. Особенно часто отмечается недостаток витамина С. Этот витамин в организме не синтезируется и не накапливается, поэтому при недостаточном поступлении его с пищей быстро проявляются симптомы гиповитаминоза. Чаще всего это наблюдается в зимне-весенний период, когда в рационе пи-тания мало свежих овощей и фруктов. При гиповитаминозе С резко снижается сопротивляемость организма инфекционным заболеваниям, в том числе вирусным инфекциям, например гриппу. Кроме того, гиповитаминозные состояния снижают работоспособность человека: быстро наступает утомляемость и ухудшается самочувствие. Приводим микросимптомы некоторых гиповитаминозных состояний. Для гиповитаминоза С характерны разрыхленные, кровоточащие даже при легком прикосновении десны (кровь на щетке при чистке зубов), у края зубов на деснах синеватая каемка. На коже бедер, ягодицах, икрах, разгибательных поверхностях плеча и предплечья — выпуклые фолликулы волосяных мешочков, в центре фолликула красная точка (фолликулез), в области волосистой части головы фолликулы кровоточат и ощущается зуд. При этом имеется ряд субъективных симптомов: быстрое наступление утомляемости, снижение работоспособности, сонливость. Отмечается акроцианоз. Одним из ранних объективных симптомов гиповитаминоза С является понижение резистентности капилляров кожи к пониженному давлению. Для выявления этого симптома пользуются прибором Нестерова. Капсулу прибора накладывают на предварительно смазанную вазелином кожу предплечья с медиальной стороны на 3 мин и с помощью сосудов, наполненных ртутью, создается отрицательное давление. У людей, достаточно обеспеченных витаминами Р и С, количество образующихся петехий условно принято до 15. При повышенной проницаемости капилляров на коже появляются петехий через 2 мин действия отрицательного давления. О гиповитаминозе свидетельствуют следующие признаки: 1) появление петехий при давлении 75 мм рт. ст.; 2) количество петехий более 6 при 175 мм рт. ст.; 3) количество петехий более 15 при 200 мм рт. ст. Не менее важное значение имеет исследование мочи на выделяющийся витамин С. Определяют его количество в миллиграммах за час. При нормальном насыщении организма витамином С за час с мочой у человека выделяется 0,8—1 мг (независимо от количества мочи). При гиповитаминозе аскорби-новой кислоты выделяется меньше — 0,5 мг/ч. При гиповита-минозах снижается количество витамина С также в крови. Симптомы недостаточности витаминов группы В (B1, В2, В6, биотипа и др.) характеризуются жирной себореей кожи за ушными раковинами, носогубных складок, покраснением и трещинами слизистой оболочки губ, мелкими папулами в углах рта, гиперемией сосудов у перехода склеры в роговицу (перикорнеальная инъекция), гипертрофией, а затем гипотрофией сосочков языка (язык лаковый, красный кончик языка), наличием трещин на языке («географический язык»).

Макроэлементы - это элементы, которые содержатся в организме человека в относительно больших количествах. К ним относятся натрий, кальций, магний, калий, хлор, фосфор, сера, азот, углерод, кислород, водород. В теле взрослого человека содержится порядка 4 граммов железа, 100 г натрия, 140 г калия, 700 г фосфора и 1 кг кальция. Несмотря на такие разные цифры, вывод очевиден: вещества, объединенные под названием «макроэлементы», жизненно необходимы нам для существования. Большую потребность в них испытывают и другие организмы: прокариоты, растения, животные. Сторонники эволюционного учения утверждают, что необходимость в макроэлементах определяется условиями, в которых зародилась жизнь на Земле. Когда суша состояла из твердых пород, атмосфера была насыщенна углекислотой, азотом, метаном и водяными парами, а вместо дождя на землю выпадали растворы кислот, именно макроэлементы были единственной матрицей, на основе которых могли появиться первые органические вещества и примитивные формы жизни. Поэтому даже сейчас, миллиарды лет спустя, все живое на нашей планете продолжает испытывать необходимость в обновлении внутренних ресурсов магния, серы, азота и других важных элементов, образующих физическую структуру биологических объектов. Можно с уверенностью утверждать, что макроэлементы - это основа жизни и здоровья человека. Содержание в организме макроэлементов достаточно постоянно, однако могут возникать довольно серьезные отклонении от нормы, что приводит к развитию патологий различного характера. Макроэлементы сконцентрированы преимущественно в мышечной, костной, соединительной тканях и в крови. Они являются строительным материалом несущих систем и обеспечивают свойства всего организма в целом. Макроэлементы отвечают за стабильность коллоидных систем организма, нормальное кислотно-щелочное равновесие, поддерживают осмотическое давление. Калий (K) Наряду с натрием обеспечивает работу так называемого калий-натриевого насоса, за счёт которого сокращаются и расслабляются наши мышцы. При малейшем нарушении обмена калия страдает сердечная мышца, что проявляется в слабости, головокружении, сердцебиении, отёках. И если вы не съедаете 3-4 мг калия в день в виде винограда, изюма, абрикосов, кураги, моркови, болгарского перца, печёного картофеля с кожурой, то необходимо пополнять его запасы за счёт приёма синтетических микроэлементов. Кальций (Ca) ☀ Зубы и кости: главная функция макроэлемента - функция структурного материала, создание и поддержание полноценных зубов и костей. В составе костной ткани кальций содержится в двух формах: свободной и связанной. Если резервы минерального вещества в свободной форме истощены, извлекается кальций из костей для поддержания его уровня в крови. Каждый год на 20% происходит обновление костей в организме взрослого человека. ☀ Сокращение мышечной ткани: кальций оказывает влияние на сокращения мышц и, действуя на сердечную мышцу, координирует сердцебиение. ☀ ЦНС: требуется для передачи нервных импульсов, активизируя действие ферментов, принимающих участие в синтезе нейромедиаторов. ☀ Сердечно-сосудистая система: вместе с магнием, калием, натрием кальций регулирует давление крови. ☀ Система крови: усиливает действие витамина K (протромбин), являющегося основным фактором нормальной свертываемости крови. ☀ Клеточные мембраны: кальций воздействует на проницаемость мембран, требуется для транспортировки питательных веществ и иных соединений сквозь клеточные мембраны, а также с целью укрепления соединительных тканей клеток. ☀ Иные функции: способствует укреплению иммунной системы, синтезу и активации многих ферментов и гормонов (оказывает десенсибилизирующее и противовоспалительное действие на функцию эндокринных желез), которые принимают участие в переваривании пищи, синтезе слюны, жировом обмене и метаболизме энергии. Итак, роль кальция в организме: координация проницаемости клеточных мембран, внутриклеточных процессов, нервной проводимости, сокращений мышц, поддержание работы сердечно-сосудистой системы, формирование костей и минерализация зубов, участие в важнейшем этапе работы системы гемостаза - свертывании крови. Магний (Mg) Magnifique - значит великолепный. От этого французского слова получил название элемент периодической таблицы - магний. На открытом воздухе горит это вещество очень эффектно, великолепным ярким пламенем. Отсюда и магний. Однако великолепен магний не только тем, что горит красиво. Необычайно важна роль магния в организме человека для обеспечения протекания различных жизненных процессов. И, к счастью, с горением это не связано никак. А какие это процессы? Давайте рассмотрим. Организма человека содержит, в среднем, 20-30 миллиграммов магния. 70% этого количества включают в себя кости скелета, остальной объём содержится в мышцах, железах внутренней секреции. Небольшое количество магния присутствует в крови. Магний успокаивает нервную систему, и центральную, и периферическую. Вообще, магний необходим для регулировки равновесия в мышечной и нервной тканях. Магний как бы обеспечивает «внутренний покой» организма. Магний является кофактором и активатором некоторых ферментов - энолазы, щелочной фосфатазы, карбоксилазы, гексокиназы. Установлено участие магния в фосфорном и углеводном обмене. Элемент оказывает асептическое и сосудорасширяющее действие. Под воздействием соединений магния усиливается перистальтика кишечника, лучше отделяется желчь и выводится холестерин, снижается нервно-мышечная возбудимость. Магний участвует в синтезе белка. Наряду с вышеперечисленным роль магния в организме человека заключается в оказании щелочного действия на органы и ткани. С участием магния протекает более трёх сотен ферментативных реакций. Особенно активно магний участвует в процессах, которые связаны с утилизацией энергии, в частности, с расщеплением глюкозы и удалением из организма отработанных шлаков и токсинов. В процессах синтеза белка роль магния - производство ДНК. Получено подтверждение, что тиамин (В1), пиридоксин (В6) и витамин С полноценно усваиваются именно в присутствии магния. Благодаря магнию более устойчивой становится структура клеток во время их роста, эффективнее проходит регенерация и обновление клеток тканей и органов. Магний, этот «великолепный» элемент, стабилизирует костную структуру и придаёт костям твёрдость. Натрий (Na) Натрий - это макроэлемент, который обеспечивает проводимость нервных импульсов, входит в состав крови и регулирует баланс воды в организме. Натрием заполнены все межклеточные пространства, то есть он является основой всех межклеточных жидкостей, а вместе с калием он образует нормальный баланс жидкости, предотвращая риск обезвоживания, в следствии чего, роль натрия трудно переоценить. Усвоение натрия увеличивается при параллельном приеме витамина Д и К, а хлор и калий могут, наоборот, замедлить его усвоение. Также натрий влияет на нервную систему: с помощью разности концентрации натрия генерируются электрические сигналы - основа нервной системы. Натрий укрепляет сердечно-сосудистую системы, входя в состав крови, что позволяет регулировать объем крови. Также натрий является сосудорасширяющим макроэлементом, он нормализует артериальное давление, влияет на работу миокарда. Натрий улучшает пищеварение, помогает образовывать желудочный сок, помогает при доставке глюкозы клетками, активирует многие пищеварительные ферменты. Помимо этого натрий важен для регулировки выделительных систем, для кислотно-щелочного баланса в организме, а также помогает сохранить и накопить многие вещества в крови после их растворения. Сера (S) Сера - играет важную роль в организме человека. Она составляет 0.25% веса человеческого тела и является непременной составной частью клеток, тканей органов, нервной, костной и хрящевой ткани, а также волос, кожи и ногтей человека. Сера участвует в обменных процессах в организме и способствует их нормализации; является составным элементом ряда аминокислот, витаминов, ферментов и гормонов (в том числе инсулина); играет важную роль поддержании кислородного баланса; улучшает работу нервной системы; стабилизирует уровень сахара в крови; повышает иммунитет; оказывает противоаллергическое воздействие. Улучшают усвояемость серы такие элементы как фтор и железо, а такие как мышьяк, свинец, молибден, барий и селен наоборот ухудшают ее усвоение. А еще сера... участвует в формировании хрящевой и костных тканей, улучшает работу суставов и связок влияет на состояние кожи, волос и ногтей (входит в состав коллагена, кератина и меланина) укрепляет мышечную ткань (особенно в период активного роста у детей и подростков) участвует в образовании некоторых витаминов и усиливает эффективность витамина В1, биотина, витамина В5 и липоевой кислоты оказывает ранозаживляющий и противовоспалительный эффект уменьшает суставные, мышечные боли и судороги способствует нейтрализации и вымыванию шлаков и токсинов из организма стабилизирует уровень сахара в крови помогает печени выделять желчь Фосфор (P) Фосфор относится к структурным (тканеобразующим) макроэлементам, его содержание в организме взрослого человека составляет около 700 г. Большая часть фосфора (85-90%) находится в костях и зубах, остальное - в мягких тканях и жидкостях. Около 70% общего фосфора в плазме крови входит в органические фосфолипиды, около 30% - представлено неорганическими соединениями (10% соединения с белком, 5% комплексы с кальцием или магнием, остальное - анионы ортофосфата). фосфор входит в состав многих веществ организма (фосфолипиды, фосфопротеиды, нуклеотиды, коферменты, ферменты и пр.) фосфолипиды являются основным компонентом мембран всех клеток в организме человека в костях фосфор находится в виде гидроксилапатита, в зубах в виде фторапатит, выполняя структурную функцию остатки фосфорной кислоты входят в состав нуклеиновых кислот и нуклеотидов, а также в состав аденозинтрифосфорной кислоты (АТФ) и креатинфосфата - важнейшие аккумуляторы и переносчики энергии остатки фосфорной кислоты входят в состав буферной системы крови, регулируя ее значение рН Хлор (Cl) Равновесие, которое поддерживает хлор - это баланс между эритроцитами и плазмой, кровью и тканями организма, а также водный баланс. Если этот баланс нарушен, то появляются отёки. Вместе с калием и натрием хлор обеспечивает нормальный водно-солевой обмен, и может снимать отёки различного происхождения, приводя в норму артериальное давление. Соотношение этих элементов всегда должно быть сбалансированным, так как они поддерживают нормальное осмотическое давление межклеточной жидкости. Кислотно-щелочной дисбаланс, который может появиться вследствие нарушения равновесия между этими элементами, вызывает различные заболевания. Хлор важен для нормального пищеварения, так как он участвует в образовании соляной кислоты, являющейся основным компонентом желудочного сока, а также стимулирует активность амилазы - фермента, способствующего расщеплению и усвоению углеводов. При некоторых заболеваниях желудочно-кишечного тракта, сопровождающихся воспалительными процессами, количество хлора в организме уменьшается. Улучшая работу печени, хлор помогает клеткам и тканям избавляться от шлаков, а также своевременно выводит из организма углекислый газ. Для спортсменов важно, чтобы в их организме всегда соблюдался баланс хлора, так же, как натрия и калия: хлор необходим суставам - он позволяет им дольше сохранять гибкость, а мышцам помогает оставаться сильными.

Микроэлементы Для обеспечения оптимальной деятельности организма в нем присутствуют различные минералы. Они разделены на две категории. Макроэлементы присутствуют в объеме большем - 0,01%, а микроэлементов содержится меньше 0,001%. Однако вторые, несмотря на такую концентрацию, имеют особую ценность. Далее разберемся, какие присутствуют микроэлементы в организме человека, что это такое и для чего они нужны. Роль микроэлементов в организме человека достаточно велика. Эти соединения обеспечивают нормальное течение почти всех биохимических процессов. Если содержание микроэлементов в организме человека находится в пределах нормы, то все системы будут функционировать стабильно. Согласно статистике, около двух миллиардов людей на планете страдают от дефицита этих соединений. Недостаток микроэлементов в организме человека приводит к умственной отсталости, слепоте. Многие младенцы при дефиците минералов погибают, едва появившись на свет. Соединения прежде всего отвечают за формирование и развитие ЦНС. Роль микроэлементов в организме человека распределяется и на уменьшение числа наиболее распространенных внутриутробных нарушений при образовании сердечно-сосудистой системы. Каждое соединение оказывает влияние на определенную область. Немаловажным является значение микроэлементов в организме человека при формировании защитных сил. Например, у людей, которые получают минералы в необходимом количестве, многие патологии (кишечные инфекции, корь, грипп и прочие) протекают гораздо легче. Источники микроэлементов Многие пищевые продукты содержат микроэлементы, необходимые организму. Их содержание в пище растительного происхождения недостаточно сбалансировано. Животная пища характеризуется большим количеством микроэлементов. В таких источниках наблюдается максимальная сбалансированность. Витамины и микроэлементы необходимы каждому человеку в определенных количествах. В литературных источниках наверняка найдется таблица, в которой указано четкое количество макро и многих микроэлементов. Их роль в организме велика. Получить достаточно микроэлементов можно с такими продуктами, как зерновые культуры, овощи, бобовые, молочные продукты, мясо животных и птицы, яйца, морепродукты. Для обогащения организма полезными веществами следует контролировать присутствие в рационе продуктов различных классов. По надобности рекомендуется ежедневно чередовать ингредиенты. Примеры правильного сбалансированного питания можно найти в специальном пособии. Там указаны необходимые макро и некоторые микроэлементы, которые должны ежедневно поступать с пищей в организм человека. Роль минералов для людей, соблюдающих низкокалорийную диету, особо важна. Не всегда удается получить нужное количество полезных веществ с пищей. Тогда человеку назначаются аптечные витамины и минералы. Фармацевтические компании выпускают средства с необходимым содержанием микроэлементов. Каждый человек владеет сведениями о роли микроэлементов. При разработке препарата учтена совместимость витаминов и некоторых микроэлементов, входящих в его состав. Витамины и минералы, входящие в состав аптечных комплексов, полностью восстанавливают силы организма человека. Не каждый человек готов принимать витаминные комплексы, тем более, что всегда есть вариант получать нужные организму вещества прямо из продуктов питания. Рассмотрим соотношение некоторых микроэлементов и продуктов: медь - можно получить из печени, почек, сердца; цинк - получают из морепродуктов, злаковых, бобовых, лука, грибов, картофеля, какао, молока; йод - содержится в морской капусте, всех остальных водорослях и морепродуктах; калий - есть в томатах, бананах, свекле, картофеле, семечках, цитрусах; кальций - содержится в молоке, молочных продуктах; магний - присутствует в орехах, бананах, овощах листовых; железо - есть в яблоках, бобовых, грибах; натрий - присутствует в пищевой соли, облепихе, свекле; сера - присутствует в калине; кобальт - есть в капусте, свекле, моркови; никель - присутствует в орехах, горохе, сое; фтор - есть в бобовых, фасоли, сое, горошке; хлор - присутствует в калине. Сложно выделить какие-то универсальные продукты, богатые сразу всеми микроэлементами, поэтому самый оптимальный вариант - это включить в свой рацион максимальное разнообразие растительной и животной пищи. Чем большее количество разных продуктов присутствует у вас на столе, тем лучше вы обеспечиваете свой организм всем необходимым. Алюминий (Al) Алюминий содержится практически во всех органах и тканях человека. В умеренных количествах этот микроэлемент выполняет ряд важных функций, но в больших дозах представляет серьезную опасность для здоровья человека. Накапливается алюминий в легких, костной и эпителиальной тканях, головном мозге и печени. Выводится из организма с мочой, калом, потом и выдыхаемым воздухом. Способствует эпителизации кожи, принимает участие в построении соединительной и костной тканей, участвует в образовании фосфатных и белковых комплексов, повышает переваривающую способность желудочного сока, повышает активность ряда пищеварительных ферментов, влияет на функцию околощитовидных желез. Бор (B) Этот элемент можно найти буквально во всех человеческих тканях и органах, однако наиболее богаты им кости нашего скелета, а также зубная эмаль. Бор благоприятно влияет на весь организм полностью. Благодаря этому веществу более стабильно начинают работать эндокринные железы, правильно формируется скелет, повышается количество половых гормонов, что значимо в первую очередь для женщин в период климакса. Бор содержится в рисе, бобовых, кукурузе, свекле, гречке, сое. Если данного элемента не хватает в организме, то происходит сбой гормонального фона, вследствие чего у женщин могут появиться следующие заболевания: остеопороз, эрозии, рак женских органов, миомы. Возможно также возникновение мочекаменной болезни и болезней суставов. Бром (Br) Бром оказывает влияние на правильную активность щитовидной железы, участвует в функционировании ЦНС, усиливает процессы торможения. К примеру, у человека, принимающего препарат, содержащий бром, снижается половое влечение. Этот элемент присутствует в таких продуктах, как орехи, бобовые, зерновые. При дефиците брома в организме нарушается сон, снижается уровень гемоглобина. Ванадий (V) Ванадий - малоизвестный химический элемент. Однако ванадий необходим для правильного функционирования иммунной системы. Ванадий стимулирует движение фагоцитов к болезнетворному, патогенному микроорганизму. А фагоциты способны уничтожать патогенные микробы. Исследования последних лет показали, что ванадий способен замедлять процессы старения. В целом функции ванадия в организме изучены недостаточно, однако данный элемент принимает участие в регуляции деятельности сердечнососудистой системы, углеводного обмена, регуляции метаболизма костей и зубов. Дефицит ванадия приводит к высокому риску развития сахарного диабета и атеросклероза. Избыток ванадия снижает содержание аскорбиновой кислоты в организме, усиливает склонность к бронхолегочным заболеваниям, ведет к риску развития рака. В медицине соединения ванадия известны давно и применялись в лечении сифилиса, туберкулеза и ревматизма. Итак, какие же продукты содержат столь малоизвестный, но необходимый элемент. Ванадий содержится в неочищенном рисе, овсе, ржи, ячмене, пшенице, гречке, редисе, салате, моркови, свекле, вишне, землянике. Железо (Fe) Микроэлемент железо является компонентом важнейших железосодержащих белков в т. ч. ферментов, в которые входит как в виде гема, так и в негемовой форме. Основная масса железа в виде гема включена в гемоглобин. Кроме того, железо в такой же форме входит в состав цитохрома Р-450, цитохрома G5, цитохромов дыхательной цепи митохондрий, антиоксидантных ферментов (каталаза, миелопероксидаза). Поэтому этот микроэлемент важен не только для обеспечения организма кислородом, но и функционирования дыхательной цепи и синтеза АТФ, процессов метаболизма и детоксикации эндогенных и экзогенных веществ, синтеза ДНК, инактивации токсических перекисных соединений. Железосодержащие соединения играют важную роль в функционировании иммунной системы, прежде всего, клеточного звена. Наиболее явная форма проявления дефицита железа - железодефицитная анемия, за которой могут скрываться серьезные нарушения в организме (хронические потери крови при внутренних кровотечениях). При дефиците железа наблюдается бледность кожных покровов, инъекция сосудов склер, дисфагия, повреждаются слизистые оболочки полости рта и желудка, истончаются и деформируются ногти. Йод (I) Наиболее высокое содержание обнаруживается в щитовидной железе, для функционирования которой йод абсолютно необходим. Недостаточное поступление йода в организм ведет к появлению зоба эндемического, избыточное поступление - к развитию гипотиреоза. Суточная потребность в йоде составляет 50-200 мкг. Основным источником в питании являются молоко, овощи, мясо, яйца, морская рыба, продукты моря. В норме в плазме крови содержится 275-630 нмоль/л (3,5-8 мкг/100 мл) белково-связанного йода. Кремний (Si) Кремний необходим для нормального протекания жирового обмена в организме. Присутствие кремния в стенках сосудов препятствует проникновению жиров в плазму крови и их отложению в сосудистой стенке. Кремний помогает образованию костной ткани, способствует синтезу коллагена. Он оказывает сосудорасширяющее действие, чем способствует снижению артериального давления. Так же стимулирует иммунитет и участвует в сохранении упругости кожи. Кобальт (Co) Наибольшее содержание отмечают в крови, селезенке, костях, яичниках, гипофизе, печени. Стимулирует процессы кроветворения, участвует в синтезе витамина В12, улучшает всасывание железа в кишечнике и катализирует переход так называемого депонированного железа в гемоглобин эритроцитов. Способствует лучшей ассимиляции азота, стимулирует синтез мышечных белков. Кобальт влияет на углеводный обмен, активизирует костную и кишечную фосфатазы, каталазу, карбоксилазу, пептидазы, угнетает цитохромоксидазу и синтез тироксина. Избыток кобальта может вызвать кардиомиопатию, оказывает эмбриотоксическое действие. Суточная потребность составляет 40-70 мкг. Основные источники в питании - молоко, хлеб и хлебопродукты, овощи, печень, бобовые. В норме в плазме крови содержится примерно 20-600 нмоль/л (0,1-4 мкг/100 мл) кобальта. Медь (Cu) Медь необходима для выработки гемоглобина, уровень которого при ее недостатке понижается, и врачи начинают рекомендовать нам пить гранатовый сок. Дефицит меди приводит и к атрофии сердечной мышцы, поэтому, чтобы предотвратить такие проблемы со здоровьем, употребляйте: овощи, крупы, мясо, яйца, творог, пивные дрожжи, грибы, кофе и какао, бобовые, яблоки, смородину, крыжовник, землянику. Марганец (Mn) Этот минерал в ответе за функцию деторождения, состояние костей, регулирует работу ЦНС. Марганец улучшает потенцию, поскольку под его влиянием активнее проявляются мышечные рефлексы, он снижает нервное раздражение. Продукты с марганцем: агар-агар, орехи, имбирь. Если марганца организму не хватает, то нарушается окостенение человеческого скелета, деформируются суставы. Молибден (Mo) Организм нуждается в регулярном поступлении молибдена. Для взрослого человека суточная норма составляет около 150 мкг. Повышенная концентрация вызывает развитие «молибденовой подагры». Оптимальное количество обеспечивает профилактику болезни. Препараты с содержанием минерала назначаются индивидуально пациенту, так как превышение дозы может быть причиной нежелательных последствий. Никель (Ni) Этот микроэлемент участвует в формировании кровяных клеток и насыщении их кислородом. Никель также регулирует жировой обмен, гормональный уровень, понижает артериальное давление. Элемент присутствует в кукурузе, груше, сое, яблоках, чечевице и прочих бобовых. Селен (Se) Роль микроэлемента селена в организме определяется в первую очередь его включением в состав одного из важнейших антиоксидантных ферментов - Se-зависимой глютатионпероксидазы, которая защищает клетки от накопления продуктов перекисного окисления, предупреждая тем самым повреждение ее ядерного и белоксинтезирующего аппарата. Селен является синергистом витамина Е и способствует повышению его антиоксидантной активности. Селен входит в состав фермента - йодтиронин-5-дейодиназы (контролирующего образование трийодтиронина), в состав белков мышечной ткани и, что особенно важно, белков миокарда. В виде селенпротеина является составной частью тестикулярной ткани. Поэтому дефицит селена приводит к ослаблению антиоксидантного статуса, антиканцерогенной защиты, обусловливал миокардиодистрофию, нарушение сексуальной функции, иммунодефициты. Помимо этого селен проявляет антимутагенный, антитератогенный, радиопротекторный эффекты, стимулирует антитоксическую защиту, нормализует обмен нуклеиновых кислот и белков, улучшает репродуктивную функцию, нормализует обмен эйкозаноидов (простагландинов, простациклинов, лейкотриенов), регулирует функцию щитовидной и поджелудочной желез. В силу изложенного селен относится к геропротекторам. Фтор (F) Фтор - основной участник формирования зубной ткани и зубной эмали. Перечень продуктов: орехи, тыква, просо, изюм. Симптомы недостатка в организме: недостаточность фтора проявляется частым проявление кариесных заболеваний зубов. Хром (Cr) Суточная потребность: 150 миллиграмм в сутки. Значение: регулирует уровень сахара в крови, влияет на процессы кроветворения, помогает преодолевать стресс, способствует расщеплению жира. В каких продуктах содержится: печень, мясо, фасоль, сыр, черный перец, горох. Цинк (Zn) Цинк так широко распространен, потому что он является необходимым компонентом функционирования многих ферментов. Например, цинк входит в состав важнейшего антиоксидантного фермента - супероксиддисмутазы.Благодаря этому можно смело считать этот элемент необходимым компонентом для создания антиоксидантной защиты клеток организма. Цинк необходим для синтеза белков (например, коллагена) и роста костей. Также этот элемент принимает участие в процессах деления и созревания клеток, в формировании противовирусного иммунного ответа. Цинк регулирует деятельностьинсулина, входит в состав полового гормона дигидрокортизона. Без цинка невозможно эффективное всасывание витамина Е и поддержание нормального уровня этого витамина в организме. При интоксикации углекислым газом цинк способствует быстрому выведению газа из организма. Дерматологи используют свойства цинка ускорять заживление ран на коже, способствовать росту волос и ногтей, а также снижать активность сальных желез. Для хорошего состояния кожи, волос и ногтей, а также правильного функционирования кожи, цинк жизненно необходим.

Витамины (от лат. vita — «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы, необходимых для нормальной жизнедеятельности организмов. Роль витаминов в жизни человека

Основной функцией витаминов в жизни человека является регулирующее влияние на обмен веществ и тем самым обеспечение нормального течения практически всех биохимических и физиологических процессов в организме.

Витамины участвуют в кроветворении, обеспечивают нормальную жизнедеятельность нервной, сердечно-сосудистой, иммунной и пищеварительной систем, участвуют в образовании ферментов, гормонов, повышают устойчивость организма к действию токсинов, радионуклидов и других вредных факторов.

Несмотря на исключительную важность витаминов в обмене веществ, они не являются ни источником энергии для организма (не обладают калорийностью), ни структурными компонентами тканей.

Витамины содержатся в пище (или в окружающей среде) в очень малых количествах, и поэтому относятся к микронутриентам. К витаминам не относят микроэлементы и незаменимые аминокислоты.

Функции витаминов

Витамин А (Ретинол) — необходим для нормального роста и развития организма. Участвует в образовании в сетчатке глаз зрительного пурпура, влияет на состояние кожных покровов, слизистых оболочек, обеспечивая их защиту. Способствует синтезу белков, обмену липидов, поддерживает процессы роста, повышает устойчивость к инфекциям.

Витамин В1 (Тиамин) – играет большую роль в функционировании органов пищеварения и центральной нервной системы (ЦНС), а также играет ключевую роль в обмене углеводов.

Витамин В2 (Рибофлавин) — играет большую роль в углеводном, белковом и жировом обмене, процессах тканевого дыхания, способствует выработке энергии в организме. Также рибофлавин обеспечивает нормальное функционирование центральной нервной системы, пищеварительной системы, органов зрения, кроветворения, поддерживает нормальное состояние кожи и слизистых.

Витамин В3 (Ниацин, Витамин PP, Никотиновая кислота) – участвует в метаболизме жиров, белков, аминокислот, пуринов (азотистых веществ), тканевом дыхании, гликогенолизе, регулирует окислительно-восстановительные процессы в организме. Ниацин необходим для функционирования пищеварительной системы, способствуя расщеплению пищи на углеводы, жиры и белки при переваривании и высвобождению энергии из пищи. Ниацин эффективно понижает уровень холестерина, нормализирует концентрацию липопротеинов крови и повышает содержание ЛПВП, обладающих антиатерогенным эффектом. Расширяет мелкие сосуды (в том числе головного мозга), улучшает микроциркуляцию крови, оказывает слабое антикоагулянтное воздействие. Жизненно важен для поддержания здоровой кожи, уменьшает боли и улучшает подвижность суставов при остеоартрите, оказывает мягкое седативное действие и полезен при лечении эмоциональных и психических расстройств, включая мигрень, тревогу, депрессию, снижение внимания и шизофрению. А в некоторых случаях даже подавляет рак.

Витамин В5 (Пантотеновая кислота) – играет важную роль в формировании антител, способствует усвоению других витаминов, а также стимулирует в организме производство гормонов надпочечников, что делает его мощным средством для лечения артритов, колитов, аллергий и болезней сердечно-сосудистой системы.

Витамин В6 (Пиридоксин) — принимает участие в обмене белка и отдельных аминокислот, также жировом обмене, кроветворении, кислотообразующей функции желудка.

Витамин В9 (Фолиевая кислота, Bc, M) – принимает участие в функции кроветворения, способствует синтезу эритроцитов, активизирует использование организмом витамина В12, важны для процессов роста и развития.

Витамин В12 (Кобаламины, Цианокобаламин) — играет большую роль в кроветворении и работе центральной нервной системы, участвует в белковом обмене, предупреждает жировое перерождение печени.

Витамин С (Аскорбиновая кислота) – принимает участие во всех видах обмена веществ, активизирует действие некоторых гормонов и ферментов, регулирует окислительно-восстановительные процессы, способствует росту клеток и тканей, повышает устойчивость организма к вредным факторам внешней среды, особенно к инфекционным агентам. Влияет на состояние проницаемости стенок сосудов, регенерацию и заживление тканей. Участвует в процессе всасывания железа в кишечнике, обмене холестерина и гормонов коры надпочечников.

Витамин D (Калициферолы). Существует много разновидностей витамина D. Самые необходимые для человека витамин D2 (эркокальциферол) и витамин D3 (холекальциферол). Они регулируют транспорт кальция и фосфатов в клетках слизистой оболочки тонкой кишки и костной ткани, участвуют в синтезе костной ткани, усиливают ее рост.

Витамин E (Токоферол). Витамин Е называют витамином «молодости и плодовитости», так как являясь мощным антиоксидантом токоферол замедляет процессы старения в организме, а также обеспечивает работу половых гонад как у женщин, так и у мужчин. Кроме того, витамин Е необходим для нормального функционирования иммунной системы, улучшает питание клеток, благоприятно влияет на периферическое кровообращение, предотвращает образование тромбов и укрепляет стенки сосудов, необходим для регенерации тканей, снижая возможность образования шрамов, обеспечивает нормальную свертываемость крови, снижает кровяное давление, поддерживает здоровье нервов, обеспечивает работу мышц, предотвращает анемию, облегчает болезнь Альцгеймера и диабет.

Витамин К. Этот витамин называют противогеморрагическим так как он регулирует механизм свертывания крови ,что оберегает человека от внутренних и внешних кровотечений при повреждениях. Именно из-за этой его функции, витамин К часто дают женщинам во время родов и новорожденным детям для предотвращения возможных кровотечений. Также витамин К участвует в синтезе белка остеокальцина, тем самым обеспечивая формирование и восстановление костных тканей организма, предупреждает остеопороз, обеспечивает работу почек, регулирует прохождение многих окислительно-восстановительных процессов в организме, оказывает антибактериальное и болеутоляющее воздействие.

Витамин F (Ненасыщенные жирные кислоты). Витамин F важен для сердечно-сосудистой системы: предупреждает и снижает отложения холестерина в артериях, укрепляет стенки кровеносных сосудов, улучшает кровообращение, нормализует давление и пульс. Также витамин F участвует в регуляции жирового обмена, эффективно борется с воспалительными процессами в организме, улучшает питание тканей, влияет на процессы размножения и лактацию, оказывает антисклеротическое действие, обеспечивает работу мускулов, помогает нормализовать вес, обеспечивает здоровое состояние кожи, волос, ногтей и даже слизистой оболочки желудочно-кишечного тракта.

Витамин H (Биотин, Витамин B7). Биотин занимает важную роль в процессах обмена белков, жиров и углеводов, необходим для активации витамина С, с его участием протекают реакции активирования и переноса углекислого газа в кровеносной системе, формирует часть некоторых ферментных комплексов и необходим для нормализации роста и функций организма. Биотин, взаимодействуя с гормоном инсулином, стабилизирует содержание сахара в крови, также участвует в производстве глюкокиназы. Оба этих фактора важны при диабете. Работа биотина помогает сохранять кожу здоровой, защищая от дерматитов, уменьшает боли в мышцах, помогает предохранить волосы от седины и замедляет процессы старения в организме. Конечно же, данный список полезных свойств можно продолжать, и в одну сттаью он не вместится, поэтому, по каждому отдельному витамину будет написана отдельная статья. Некоторые же из витаминов уже описаны на сайте.

Классификация витаминов

Исходя из растворимости, витамины делят на:

  • Жирорастворимые витамины

Витамин A (ретинол); Витамин D (Кальциферол); Витамин E (Токоферол); Витамин K (Филлохинон, Менатетренон, Менадион, Менадиол).

Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень.

  • Водорастворимые витамины

Витамин B1 (Тиамин); Витамин B2 (Рибофлавин); Витамин B3, PP (Ниацин, Никотинамид, Никотиновая кислота); Витамин B5 (Пантотеновая кислота); Витамин B6 (Пиридоксин); Витамин В7 (Витамин Н, Биотин); Витамин B9, Bc, M (Фолиевая кислота); Витамин B12 (Кобаламины, Цианокобаламин); Витамин C (Аскорбиновая кислота);

Водорастворимые витамины в существенных количествах не депонируются и при избытке выводятся с водой. Это объясняет большую распространённость гиповитаминозов водорастворимых витаминов и гипервитаминозов жирорастворимых витаминов.

 

  • Витаминоподобные соединения

Наряду с витаминами, известна группа витаминоподобных соединений (веществ), которые обладают теми или иными свойствами витаминов, однако, всех основных признаков витаминов не имеют.

К витаминоподобным соединениям относят:

Жирорастворимые:

Витамин F (эссенциальные жирные кислоты); Кофермент Q (убихинон, коэнзим Q);

Водорастворимые:

Витамин B4 (Холин); Витамин B8 (Инозит, Инозитол); Витамин B10 (Парааминобензойная кислота); Витамин B13 (Оротовая кислота, оротат); Витамин B15 (Пангамовая кислота); Витамин Bт (Карнитин); Витамин N (Тиоктовая кислота, Липоевая кислота); Витамин P (Биофлавоноиды); Витамин U (S-метилметионин);

Суточная потребность в витаминах

Потребность в каком либо витамине рассчитывается в дозах.

Различают:

— физиологические дозы — необходимый минимум витамина для здоровой жизнедеятельности организма; — фармакологические дозы — лечебные, значительно превосходящие физиологические — используются как лекарства при лечении и профилактике ряда заболеваний.

Так же различают:

— суточную физиологическую потребность в витамине — достижение физиологической дозы витамина; — потребление витамина — количество съеденного витамина с пищей.

Соответственно, доза потребления витамина должна быть выше, так как всасывание в кишечнике (биодоступность витамина) происходит не полностью и зависит от типа питания (состав и пищевая ценность продуктов, объём, и количество приёмов пищи).

Дополнительный прием витаминов необходим:

— людям с неправильными привычками питания, которые едят нерегулярно и питаются в основном однообразными и несбалансированными продуктами, преимущественно готовой едой и консервами. — людям, которые соблюдают длительное время диету для снижения массы тела или часто начинают и прерывают диеты. — людям в состоянии стресса. — людям, страдающим хроническими заболеваниями. — людям, страдающие непереносимостью молока и молочных продуктов. — людям, в течение длительного времени принимающие лекарства, которые ухудшают усвоение в организме витаминов и минералов. — во время заболеваний. — для реабилитации после перенесенной операции; — при усиленном занятии спортом. — вегетарианцам, т.к. в растениях отсутствует весь комплекс витаминов, необходимых для здоровой жизни человека. — при приеме гормонов и противозачаточных средств. — женщинам после родов и в период кормления ребенка грудью. — дети, вследствие усиленного роста, кроме витаминов, дополнительно должны получать в достаточном количестве такие компоненты рациона как: калий, железо, цинк. — при высокой физической или умственной работах; — пожилым людям, организм которых с возрастом хуже усваивает витамины и минералы. — курильщикам и лицам, употребляющим алкогольные напитки.