Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тema 5.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
25.64 Кб
Скачать

Плазменная обработка

        обработка материалов низкотемпературной плазмой, генерируемой дуговыми или высокочастотными Плазмотронами. При П. о. изменяется форма, размеры, структура обрабатываемого материала или состояние его поверхности. П. о. включает: разделительную и поверхностную резку, нанесение покрытий, наплавку, сварку, разрушение горных пород Плазменное бурение.

         П. о. получила широкое распространение вследствие высокой по промышленным стандартам температуры плазмы (Плазменная обработка 104 К), большого диапазона регулирования мощности и возможности сосредоточения потока плазмы на обрабатываемом изделии; при этом эффекты П. о. достигаются как тепловым, так и механическим действием плазмы (бомбардировкой изделия частицами плазмы, движущимися с очень высокой скоростью — так называемый скоростной напор плазменного потока). Удельная мощность, передаваемая поверхности материала плазменной дугой, достигает 105—106 вт/см2, в случае плазменной струи она составляет 103—104 вт/см2. В то же время тепловой поток, если это необходимо, может быть рассредоточен, обеспечивая «мягкий» равномерный нагрев поверхности, что используется при наплавке и нанесении покрытий.

Электронно-лучевая обработка.

Электронно-лучевая обработка основана на превращении кинетической энергии пучка электронов в тепловую. Тепловая энергия выделяется при столкновении быстродвижущихся электронов с обрабатываемым материалом. Плотность тепловой энергии при этом составляет до 106…107 Вт/см?, а диаметры электронных пучков 0,5…500 мкм. Высокая плотность энергии сфокусированного электронного луча позволяет осуществлять размерную обработку детали вследствие расплавления и испарения материала с узколокального участка. К основным преимуществам электронно-лучевой обработке следует отнести: возможность широкого регулирования режимов и тонкого управления тепловыми процессами; пригодность для обработки металлических и неметаллических материалов; высокий коэффициент полезного действия (до 98%). Наиболее перспективно применение электронно-лучевой обработки в области технологии радио- и микроэлектроники. Основными недостатками электронно-лучевой технологии являются: необходимость защиты от рентгеновского излучения, относительно высокая стоимость и сложность оборудования и необходимость глубокого вакуума.

Светолучевая обработка Светолучевая, или лазерная обработка, получила наибольшее распространение. Лазер — источник электромагнитного излучения, видимого инфракрасного и ультрафиолетового диапазона, основанный на вынужденном излучении атомов и молекул. Аббревиатура «лазер» — от начальных букв английской фразы «Усиление света в результате вынужденного излучения». Метод основан на нагреве рабочей зоны за счёт электромагнитных колебаний светового диапазона, получаемых с помощью оптических квантовых генераторов (лазеров). Этими электромагнитными колебаниями можно управлять, можно фокусировать в тонкие параллельные пучки с углом расхождения луча , с высокой когерентностью. Когерентный световой луч обладает высокой плотностью световой энергии. Исходящий из установки луч можно сфокусировать до диаметра 0,01 мм. При этом в фокусе луча обрабатываемый материал разогревается до десятков тысяч градусов и испаряется. Указанным методом можно обрабатывать любые поверхности в любых материалах, достигая шероховатости поверхности = 2,50…1,25 мкм.