- •Оглавление
- •Тема 7.2 прямые и плоскости в пространстве
- •1. 7.2.1 Начальные понятия стереометрии
- •1. Основные понятия стереометрии
- •2. Аксиомы стереометрии
- •3 Следствия из аксиом
- •4. Вопросы и задания:
- •2. 7.2.2 Параллельность прямых, прямой и плоскости.
- •1. Параллельные прямые в пространстве
- •2. Параллельность трех прямых
- •3. Параллельность прямой и плоскости
- •4. Вопросы и задания
- •3. 7.2.3 Взаимное расположение прямых в пространстве
- •1. Скрещивающиеся прямые
- •2. Углы с сонаправленными сторонами
- •3. Угол между прямыми
- •4. Вопросы и задания
- •4. 7.2.4 Параллельность плоскостей
- •1.Параллельные плоскости
- •2. Признак параллельности двух плоскостей
- •3. Свойства параллельных плоскостей
- •4. Вопросы и задания
- •5. 7.2.5 Перпендикулярность прямой и плоскости
- •1. Перпендикулярные прямые в пространстве
- •2. Признак перпендикулярности прямой и плоскости
- •3. Связь между параллельностью прямых и перпендикулярностью к плоскости
- •4. Вопросы и задания
- •6. 7.2.6 Перпендикуляр и наклонные
- •1. Наклонная. Перпендикуляр
- •2. Расстояние от точки до плоскости
- •3. Теорема о трех перпендикулярах
- •4. Вопросы и задания
- •7. 7.2.7 Угол между прямой и плоскостью
- •1. Проекция прямой на плоскость
- •2. Угол между прямой и плоскостью
- •3. Вопросы и задания
- •8. 7.2.8 Двугранный угол
- •1. Понятие двугранного угла
- •2. Угол между плоскостями
- •3. Признак перпендикулярности двух плоскостей
- •4. Многогранные углы
- •5. Вопросы и задания
- •9. 7.2.9 Решение задач на нахождение двугранных углов
- •1. Решение типичных задач на доказательство
- •2. Решение типичных задач на вычисление
- •3. Вопросы и задания
- •Тема 7.3 многогранники
- •10. 7.3.1 Тетраэдр. Параллелепипед
- •1. Понятие тетраэдра
- •2. Понятие параллелепипеда
- •3. Свойства параллелепипеда
- •4. Вопросы и задания
- •11. 7.3.2 Построение сечений тетраэдра, параллелепипеда и куба
- •1. Примеры построения сечения тетраэдра
- •2. Примеры построения сечения параллелепипеда
- •2. Прямая, наклонная и правильная призма
- •3. Сечения призмы
- •4. Углы, образованные диагоналями призмы и её гранями
- •5. Вопросы и задания
- •13. 7.3.4 Параллелепипед и куб
- •1. Понятие параллелепипеда
- •2. Понятие прямоугольного параллелепипеда
- •3. Свойства прямоугольного параллелепипеда
- •4. Формула диагонали прямоугольного параллелепипеда
- •5. Вопросы и задания
- •Диагональ правильной четырёхугольной призмы равна а и образует с плоскостью боковой грани угол 30 градусов. Найти: а) сторону основания призмы. Б) угол между диагональю призмы и плоскостью основания.
- •15. 7.3.6 Пирамида
- •1. Понятие пирамиды, элементы пирамиды.
- •2. Правильная пирамида
- •3. Построение сечений пирамиды
- •4. Вопросы и задания
- •4. Вопросы и задания
- •17. 7.3.8 Усеченная пирамида
- •1. Понятие усеченной пирамиды
- •2. Правильная усеченная пирамида
- •3. Построение сечений усеченной пирамиды
- •4. Вопросы и задания
- •19. 7.3.10 Правильный многогранник
- •1. Понятие правильного многогранника
- •2. Теорема Эйлера и правильные многогранники
- •3. Тетраэдр, куб, октаэдр, икосаэдр, додекаэдр, икосаэдр
- •3. Вопросы и задания
- •Тема 7.4 тела и поверхности вращения.
- •20. 7.4.1 Цилиндр
- •1. Понятие цилиндра
- •2. Осевые сечения и сечения, параллельные основанию
- •3. Развертка цилиндра
- •4. Площадь поверхности цилиндра
- •5. Вопросы и задания
- •21. 7.4.2 Конус
- •1. Понятие конуса
- •2. Осевые сечения и сечения, параллельные основанию
- •3. Развертка конуса
- •4. Площадь поверхности конуса
- •5. Сечения конуса
- •6. Вопросы и задания
- •22. 7.4.3 Усечённый конус
- •1. Понятие усеченного конуса
- •23. 7.4.4 Шар и сфера
- •1. Понятие шара и сферы
- •2. Взаимное расположение плоскости и шара
- •3. Сечения
- •4. Касательная плоскость к сфере
- •5. Вопросы и задания
- •Тема 7.5 измерения в геометрии.
- •24. 7.5.1 Объем тела. Объем прямоугольного параллелепипеда
- •1. Понятие объема и его измерение
- •26. 7.5.3 Объем наклонной призмы
- •1. Формула объема наклонной призмы
- •2. Вопросы и задания
- •28. 7.5.5 Объем шара и площадь сферы
- •1. Формула объема шара и его частей
- •2. Формула площади сферы
- •3. Вопросы и задания
- •29. 7.5.6 Вычисление объёмов тел вращения. Подобие тел
- •1. Решение задач на непосредственное применение изученных формул
- •2. Отношение площадей поверхностей и объемов подобных тел
- •Список источников информации:
2. Понятие параллелепипеда
Параллелепипедом называется многогранник, у которого 6 граней - параллелограммы.
У параллелепипеда, как отмечено, 6 граней, 8 вершин и 12 ребер.
Две
грани параллелепипеда, имеющие общее
ребро, называются смежными,
а не имеющие общих ребер — противоположными.
Обычно выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани — боковыми гранями параллелепипеда.
Ребра параллелепипеда, не принадлежащие основаниям, называют боковыми ребрами.
Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю параллелепипеда (Рис. 5.).
Рис. 5.
В зависимости от видов параллелограммов и их расположения, выделяют разные виды параллелепипедов:
Параллелепипеды могут быть прямые и наклонные.
У прямых параллелепипедов боковые грани прямоугольники (Рис. 5.), у наклонных - параллелограммы (Рис. 4.).
Прямой параллелепипед, у которого основанием тоже является прямоугольник, называется прямоугольным параллелепипедом.
Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями).
У прямоугольного параллелепипеда три линейных размера DA, DC, DD1 (Рис. 6.).
Рис. 6.
3. Свойства параллелепипеда
- Противоположные грани параллелепипеда равны и параллельны.
- Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
- Боковые грани прямого параллелепипеда — прямоугольники.
4. Вопросы и задания
Уровень А:
На рёбрах CC1 и DD1 параллелепипеда ABCDA1B1C1D1 даны соответственно точки K и L.
Назови рёбра в верхнем и в нижнем основаниях параллелепипеда, которые пересекает прямая KL.
В
верхнем основании:
B1C1
A1B1
C1D1
D1A1
В нижнем основании:
DA
CD
AB
BC
Уровень В:
Сумма всех ребер параллелепипеда ABCDA1B1C1D1=120 см. Определи длину рёбер AB, BC и BB1 если AB/B1C=2/3, а BC/BB1=3/5.
Ответ: AB= 6 см; BC= 9 см; BB1= 15 см
Уровень С:
Дан тетраэдр DABC, у которого три ребра с общей вершиной D перпендикулярны. Назовём грани между этими рёбрами боковыми гранями. Определи общую площадь боковых граней, если
DA=6
DB=5
DC=8
Ответ:
11. 7.3.2 Построение сечений тетраэдра, параллелепипеда и куба
1. Примеры построения сечений тетраэдра
2. Примеры построения сечений параллелепипеда
3. Примеры построения сечений куба
4. Вопросы и задания
1. Примеры построения сечения тетраэдра
Плоскостью сечения многогранника можно назвать любую плоскость, по обе стороны которой находятся точки многогранника.
Секущая плоскость пересекает грани многогранников по отрезкам.
Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника.
Так как у тетраэдра 4 грани, то сечением тетраэдра может быть треугольник (Рис. 7.) или
четырехугольник (Рис. 8.).
Рис. 7. Рис. 8.
