- •Лекция № 1 основы строения органических соединений. Номенклатура органических соединений
- •I. По типу углеродного скелета
- •II. По типу связи
- •III. По наличию функциональных групп
- •Названия важнейших углеводородных радикалов
- •Префиксы и суффиксы применяемые для обозначения важнейших характеристических групп (в порядке падения старшинства)
- •Метан метаналь этан этаналь
- •Лекция № 2 сопряжение. Ароматичность. Электронные эффекты заместителей
- •Лекция №3 изомерия органических соединений
- •Лекция №4 кислотность и основность органических соединений
- •Природа элемента в кислотном центре
- •Стабильность аниона за счёт сопряжения
- •Влияние радикала на стабильность аниона
- •Влияние растворителя на стабильность аниона
- •Лекция №5 гидроксисоединения, их реакционная способность
- •По количеству –он групп спирты делятся на:
- •1) Одноатомные спирты (r-oh)
- •2) Многоатомные спирты (полиолы)
- •2. Реакция нуклеофильного замещения (sn):
- •3. Реакции дегидратации
- •4. Реакция этерификации с образованием сложных эфиров:
- •5. Качественная реакция на многоатомные спирты
- •Реакции окисления фенолов:
- •Реакции электрофильного замещения: (sе )
- •Лекция № 6 карбонильные соединения, их реакционная способность
- •2. Восстановление альдегидов и кетонов
- •4. Альдоновая и кротоновая конденсация:
- •Лекция № 7 карбоновые кислоты и их функциональные производные
- •1. Гидроксикислоты, содержащие группу –он:
- •1. Предельные высшие жирные кислоты:
- •2. Непредельные высшие жирные кислоты:
- •Строение карбоксильной группы
- •Химические свойства карбоновых кислот
- •Реакции галогенирования (реакции в сн-кислотном центре):
- •Пути превращения ацетоуксусной кислоты в организме:
- •Медико-биологическое значение карбоновых кислот
- •Лекция № 8 биологически важные гетероциклические соединения
- •Производные пиррола:
- •Лекция № 9 углеводы. Моносахариды
- •Биологические функции углеводов
- •Моносахариды
- •I. По виду функциональной группы:
- •II. По числу атомов углерода в цепи:
- •Альдогексозы
- •1)Глюкоза (виноградный сахар). Энантиомером d-ряда углеводов соответствует энантиомер l-ряда с противоположной конфигурацией всех центров хиральности.
- •6) К специфическим свойствам относятся различные виды окисления моносахаридов, реакции изомеризации и брожения.
- •Сахарные кислоты
- •Лекция № 9 сложные углеводы. Олигосахариды. Полисахариды
- •Невосстанавливающие дисахариды
- •2) Реакции окисления
- •Гомополисахариды. Крахмал, строение и биологическая роль
- •Гетерополисахариды. Гиалуроновая кислота
- •Гликопротеины
- •Лекция № 10 аминокислоты, их реакционная способность
- •Классификация -аминокислот по составу боковой цепи
- •Моноаминомонокарбоновые α-аминокислоты (нейтральные)
- •Лекция № 11 пептиды и белки
- •I. В зависимости от формы молекул белки подразделяются на фибриллярные и глобулярные.
- •Лекция № 12 нуклеиновые кислоты
- •Состав нуклеозидов и нуклеотидов днк и рнк
- •Третичная структура днк представляет собой многократную спирализацию вторичной структуры, обеспечивая плотную упаковку днк в ядре клетки.
- •Лекция№13 липиды
- •Жиры и масла (триацилглицеролы, триацилглицерины) – это сложные эфиры глицерола (глицерина) и высших жирных кислот, в которых все три гидроксида ацилированы.
- •Простые Смешанные
- •2. Гидрогенизация:
- •3. Присоединение иода:
- •Щелочной гидролиз:
- •1. Цереброзиды. Они включают остаток церамида и моносахарида (d-глюкоза, d-галактоза), которые соединены -гликозидной связью.
- •Галактоцереброзид Галактоцереброзиды входят в состав оболочек нервных клеток.
- •2. Ганглиозиды. Они включают остаток церамида и олигосахарида (например, лактозы или мальтозы), соединённых -гликозидной связью.
Гетерополисахариды. Гиалуроновая кислота
Она является полисахаридом соединительной ткани. Её макромолекула строится из остатков дисахаридов, соединённых (14) гликозидными связями.
Дисахаридный фрагмент включает остатки D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, соединённых (13) гликозидной связью.
Молекулярная масса полимера достигает 2-7 млн. За счёт большого числа карбоксильных групп макромолекула связывает значительное количество воды, поэтому растворы гиалуроновой кислоты обладают повышенной вязкостью. С этим связана ее барьерная функция, обеспечивающая непроницаемость соединительной ткани для болезнетворных бактерий. В комплексе с полипептидами гиалуроновая кислота входит в состав стекловидного тела глаза, суставной жидкости, хрящевой ткани.
Гликопротеины
Гликопротеины – это смешанные углеводсодержащие биополимеры, в которых белковая молекула связана с углеводами – олигосахаридами. К гликопротеинам относятся ферменты, гормоны, иммуноглобулины и муцины. К этим сложным веществам принадлежат вещества, определяющие групповую специфичность крови. В их основе лежит полипептидная цепь, к которой присоединяются олигосахаридные цепочки (до 55 штук).
Углеводный компонент и белковая часть связываются О-гликозидной связью с участием гидроксильных групп аминокислот серина и треонина. В состав углеводного компонента входят N-ацетил-D-галактозамин, N-ацетил-D-глюкозамин, D-галактоза, которые располагаются в определённой последовательности от не- восстановливающегося конца олигосахаридной цепочки (в количестве от 3 до 5). Эта последовательность называется детерминантой, именно она определяет специфичность группы крови. Детерминантным моносахаридом группы крови А служит N-ацетил-D-галактозамин, а группы β-D-галактоза. С изменением детерминанты меняется группа крови.
Муцины – это гликопротеины, в небелковой части которой содержится глюкозамин, сиаловая кислота, N-ацетил-D-галактозамин и остаток серной кислоты. Слово «муцины» образовано от греческого mucos-слизь. Муцины входят в состав слюны, яичного белка, секретов кишечника и бронхов. Их присутствие в растворе обеспечивает высокую вязкость среды.
Лекция № 10 аминокислоты, их реакционная способность
ЦЕЛИ ЛЕКЦИИ
Обучающая – Формирование знаний о классификации, номенклатуре, изомерии аминокислот, их реакционной способности, роли в организме и применении в медицинской практике.
Развивающая – Расширение кругозора обучающихся на основе интеграции знаний; развитие логическое мышление.
Воспитательная – Содействие формированию у обучающихся устойчивого интереса к изучению дисциплины «Биоорганическая химия».
ПЛАН ЛЕКЦИИ
Строение -аминокислот.
Классификация -аминокислот по составу боковой цепи.
Кислотно-основные свойства -аминокислот.
Химические свойства -аминокислот.
СОДЕРЖАНИЕ ЛЕКЦИИ
СТРОЕНИЕ -АМИНОКИСЛОТ
-Аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один из атомов водорода замещен аминогруппой (-NH2). Общее число -аминокислот достигает 300, но из них выделяют группу 20-ти наиболее важных -аминокислот, встречающихся в составе белков животного и растительного происхождения.
Общая формула -аминокислот имеет вид:
Все -аминокислоты за исключением глицина (H2N-CH2-COOH) являются оптически активными веществами, так как содержат асимметричный атом углерода и существуют в виде энантиомеров. В белках животного происхождения содержатся ,L-аминокислоты; ,D-аминокислоты встречаются в белках микроорганизмов.
Боковая цепь -аминокислот имеет специфический состав и строение для каждой -аминокислоты. Кроме углеводородных радикалов боковая цепь может содержать функциональные группы (-ОН, -SH, -COOH, -NH2) и остатки гетероциклов.
Состав боковой цепи определяет основные физико-химические свойства -аминокислот и белков.
1. Гидрофильность, то есть способность полярных группировок боковой цепи к образованию водородных связей с молекулой воды объясняется содержанием в вариабельном фрагменте гидрофильных групп (-ОН, -SH, -COOH, -NH2, [-N=], [-N(H)-]).
Способность -аминокислот растворяться в воде является главным фактором, с которым связана всасываемость аминокислот и их транспорт в организме.
К гидрофобным группам боковой цепи, снижающим растворимость, относятся углеводородные радикалы и бензольное кольцо.
2. Ионогенность боковой цепи, т.е. способность ионизироваться в водородном растворе, объясняется наличием в ее составе ионогенных групп, диссоциирующих по кислотному механизму:
-COOH -COO—+H+ (боковая цепь приобретает отрицательный заряд);
-SH -S-+H+ (боковая цепь приобретает отрицательный заряд);
Ar-OH Ar-O—+H+ (боковая цепь приобретает отрицательный заряд)
По основному механизму:
-NH2+H+ -NH3+
В водном растворе молекулы -аминокислот и белков, как правило, заряжены, и наличие заряда в сочетании с устойчивой гидратной оболочкой является важным фактором, определяющим устойчивость раствора белка.
