- •1.Классификация, характеристики и области применения мультимедиа приложений
- •Мультимедиа продукты учебного назначения
- •2.Аппаратные средства для создания аудиовизуальных продуктов
- •9. Аппаратные средства мультимедиа.
- •4 Представление видеосигнала в цифровой форме, дискретизация и квантование видеосигнала, кодирование, аналогово-цифровые и цифро-аналоговые преобразователи
- •5 Видеоданные: основные принципы и форматы представления видеоданных. Методы сжатия видеоинформации, цифровые форматы сохранения видеозаписи
- •Форматы сжатого цифрового видео
- •Семейство форматов сжатия видео mpeg
- •6 Цифровая обработка аудио- и видеосигналов: преимущества и недостатки обработки аудио- и видеосигналов в форме.
- •7 Основные параметры звуковой волны: частота, длина, период колебаний, амплитуда.
- •9 Основные принципы и форматы представления звуковых данных на компьютере.
- •Разновидности цифровых аудиоформатов[править | править вики-текст]
- •10 Комплексы для обработки видеоизображений, необходимые для наложения анимационных спецэффектов на видеозапись
- •11 Литературный и постановочный сценарий. Режиссерская разработка. Основные этапы реализации режиссерского замысла
- •12 Организация интерактивного художественного пространства. Использование выразительных средств звука и изображения.
- •13Монтаж видеоизображения, его основные функции и виды
- •Базовые монтажные правила[править | править вики-текст]
- •Механический и электронный монтаж[править | править вики-текст]
- •Линейный и нелинейный монтаж[править | править вики-текст]
- •Монтаж по крупности
- •Монтаж по ориентации в пространстве
- •Монтаж по направлению движения
- •Монтаж по фазе движения
- •Монтаж по композиции Смещение центра внимания
- •Монтаж по свету
- •Монтаж по цвету
- •Волшебное средство-«перебивка»
- •О спецэффектах и фэйдерах
- •14 Специфические особенности режиссуры презентационных программ и мультимедиа-рекламы, интерактивных игр и развлекательных программ, обучающих и образовательных программ.
- •15 Изобразительная экспликация мультимедиа-программы. Эскизы, раскадровка
- •16 Основные выразительные средства операторского искусства: светотональная и колористическая композиция, крупность плана, ракурс, движение камеры, изобразительные спецэффекты
6 Цифровая обработка аудио- и видеосигналов: преимущества и недостатки обработки аудио- и видеосигналов в форме.
7 Основные параметры звуковой волны: частота, длина, период колебаний, амплитуда.
Звуковыми(или акустическими) волнаминазываются распространяющиеся в среде волны, обладающие частотами; в пределах 16—20 000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с v< 16 Гц (инфразвуковые)иv>>20 кГц (ультразвуковые)органами слуха человека не воспринимаются. Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия растяжения. В твердых телах звуковые волны могут быть как продольными, так поперечными, так как твердые тела обладаютупругостью по отношению к деформациям сжатия (растяжения) и сдвига. Интенсивностью звукаI(или силой звука–называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:
Единица интенсивности звука в СИ — [I] =(Вт/м2). Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшая (порог слышимости)и наибольшая (порог болевого ощущения)интенсивность звука, которая способна вызвать звуковое восприятие. На рис.23.1 представлена зависимость порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, являетсяобластью слышимости. Если интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, являетсягромкость звука,зависящая от частоты. По физиологическому закону Вебера — Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:
где I0— интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10-12 Вт/м2. Величина L называется уровнем интенсивности звукаи выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими,—децибелами(дБ).
Физиологической характеристикой звука является уровень громкости,который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует «90 фон, а шепот на расстоянии 1 м — 20 фон. Некоторые данные об интенсивности звука от различных источников, а также в примечании некоторые советы. |
8Представление аудиосигнала в цифровой форме: преобразование звуковых волн в электрический сигнал, уровень электрического сигнала, моно и стерео запись звука, дискретизация и квантование звукового сигнала, цифровая обработка звуковых сигналов, системы сжатия цифровых аудиосигналов
Преобразование звуковых волн в электрический сигнал.
С самого детства мы сталкиваемся с записями музыки на разных носителях - грампластинках, кассетах, компакт-дисках и т.д. Сейчас существует два основных способа записи звука: аналоговый и цифровой. Но для того, чтобы записать звук на какой-нибудь носитель (например, магнитофонную кассету), его нужно преобразовать в электрический сигнал.
Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. А из школьных уроков физики вы, вероятно, помните, что в такой ситуации в катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают изменения плотности воздуха в звуковых волнах.
Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Слово "аналоговый", применительно к электрическому сигналу, обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе.
Уровень электрического сигнала.
У любого бытового усилителя есть ручка громкости. С ее помощью вы изменяете уровень электрического сигнала, который подается на акустические системы, заставляя последние звучать тише или громче. Обычно в электронике для измерения уровня сигнала используются единицы напряжения: вольты или более мелкие единицы - милливольты. Однако в звуковых приложениях принято измерять уровень сигнала в уже знакомых вам по разделу «Уровень и громкость звука» логарифмических единицах - децибелах. Причем изменение уровня сигнала в усилителе на 5 дБ приводит к изменению уровня звука в акустических системах на те же самые 5 дБ. Это очень удобно, поэтому все измерители уровня как бытовых, так и профессиональных звуковых устройств показывают уровни в логарифмических единицах.
В электронике применяются отрицательные значения уровня, выраженного в децибелах. Шкала начинается с минус бесконечности (отсутствие напряжения) и доходит до нуля. Положительные значения уровня указывают на перегрузку звукового тракта и, соответственно, возникновение искажений. Если у вас есть кассетная дека с индикаторами уровня записи, то вы должны это знать: если уровень 0 дБ превышается, то светятся красные сегменты индикаторов.
Как и в случае со звуковыми волнами, значение изменения уровня переменного электрического сигнала в децибелах рассчитывается по формуле, знакомой вам из раздела «Уровень и громкость звука», только значения звукового давления (силы звука) меняются на значения напряжения: N=20lg U2/U1, где U2 и U1 - это конечное и начальное напряжение сигнала. За 0 дБ принято напряжение в 0.775 В.
Примерно до середины шестидесятых годов звук записывался на магнитофон при помощи одного микрофона, а воспроизводился с помощью одной колонки. Такой метод записи и воспроизведения - монофонический или моно - был хорош всем, кроме одного: в фонограмме отсутствовало привычное для нас пространственное звучание. Это создавало определенный дискомфорт при прослушивании, ведь наш слух имеет пространственную избирательность, то есть мы можем сосредоточиться на каком-то конкретном звуке. Когда же прослушивается монофонограмма, нам гораздо труднее выделить детали - они просто маскируются за наиболее громкими звуками. Поэтому сейчас стандартом является стереозапись и стереовоспроизведение фонограмм. В самом простом случае запись производится с двух широко расставленных микрофонов на два независимых канала магнитофона. То есть как бы имитируется процесс восприятия звука нашим слуховым аппаратом. При воспроизведении этой фонограммы через две широко расставленные колонки пространственная картина восстанавливается, при этом мы получаем гораздо лучшую детализацию. Наш слух получает более привычную звуковую картину, чем при монозаписи. Передаваемая в стереофонограмме пространственная «картинка» называется стереопанорамой. В панораме можно четко выделить три положения: левое, правое и центр. Звук, находящийся в центре, будет одинаково громко воспроизводиться из двух колонок. Звуки, находящиеся в левом и правом крайних положениях, будут слышны только в одной из колонок. Все остальные положения в панораме будут воспроизводиться соответственно.
Последнее время набирает обороты новая система пространственного представления звука, которая называется 3D Sound (трехмерный звук) или Surround sound (окружающий звук). Для воспроизведения трехмерного звука используется система, состоящая из четырех колонок (две фронтальные и две тыловые), которая имитирует реальное поле слуха человека. Однако для музыки она довольно бессмысленна, так как в реальных условиях музыка звучит со сцены. Для передачи ее пространственного звучания достаточно стереовоспроизведения. Единственное разумное применение тылового канала в музыкальных записях - это размещение там аплодисментов и реверберации зала. Зато уже не вызывает никакого сомнения, что такая система воспроизведения звука будет очень полезна для сопровождения кинофильмов и компьютерных игр, где ее потенциал может быть раскрыт полностью. Обычно фонограммы, которые предназначены для систем объемного звука, специальным образом закодированы (сейчас обычно кодируются звуковые дорожки фильмов). То есть вы можете их спокойно слушать на обычных стерео или моноаппаратах - никаких признаков объемного звука вы не услышите.
Для раскодирования фонограммы вам нужно приобрести специальное устройство - декодер. Только с его помощью вы получите искомое звучание. Но такие системы достаточно дороги. В более дешевых звуковых устройствах, в том числе и звуковых картах, применяется другая система объемного звучания, которая обрабатывает обычные стереофонограммы, разделяя сигнал на две части. Первая часть его поступает во фронтальные колонки без изменений, а вторая часть задерживается на небольшое время и направляется в тыловые каналы. Настоящего объемного звука с помощью таких систем вы не получите - это не больше чем его имитация.
Квантование
Квантование − процесс замены реальных значений сигнала приближёнными с определённой точностью. Таким образом, при оцифровке фиксируется амплитуда сигнала через определённые промежутки времени и регистрируются полученные значения амплитуды в виде округлённых цифровых значений.
Влияние недостаточного количества уровней квантования интуитивно понять легче, чем эффект неподходящей частоты дискретизации. Если мы можем задать только ограниченное число различных значений, мы не сможем различать те значения, которые находятся между ними.
Когда звук квантуется на слишком маленькое количество уровней амплитуды, результат воспринимается как некое искажение, которое иногда называют шумом квантования, поскольку его худшее проявление − неприятное шипение. Это также приводит к тому, что негромкие фрагменты не слышны, а сам звук становится нечётким (как в мобильном телефоне, когда вы попадаете в область слабого сигнала). Шум квантования хорошо различим тогда, когда звук дискретизируется с помощью 8 бит (256 уровней), а не с помощью 16 бит (65 536 уровней) (рис. 2.8), которые используются для звукозаписи на компакт-дисках.

,
(23.2)