- •1.1 История развития и состояние газовой промышленности
- •1.2 Добыча газа в Казахстане
- •1.3 Преимущества природного газа, как топлива и сырья для химической промышленности.
- •2.2 Основные свойства природных газов
- •2.2.2 Плотность углеводородного конденсата
- •2.2.3 Вязкость природного газа
- •2.2.4 Тепловые свойства природных газов
- •2.2.5 Опасные свойства природного газа
- •2.3 Уравнения состояния реальных газов
- •3.1 Основные понятия о рациональной разработке газовых месторождений
- •3.2 Размещение скважин
- •3.2.1 Размещение скважин по площади газоносности
- •3.3 Режимы газовых месторождений
- •4.1 Диаграмма фазовых превращений
- •4.2 Классификация газоконденсатных залежей
- •4.3 Разработка газоконденсатного месторождения в режиме истощения, или при поддержании пластового давления
- •5.1 Цели и методы исследования газовых и газоконденсатных скважин
- •5.2 Исследование газовых скважин при стационарных (установившихся) режимах фильтрации
- •5.3 Исследование скважин при нестационарных режимах фильтрации.
- •6.1 Исследования газоконденсатных скважин
- •6.2 Технология и техника исследования газоконденсатных смесей в лабораторных условиях
- •6.3 Методы исследования газоконденсатных месторождений и промысловые установки для их проведения.
- •7.1 Основные отличия газовых скважин от нефтяных
- •7.2 Наземное оборудование газовых скважин
- •Регулирование дебита газовых скважин
- •7.3 Подземное оборудование газовых скважин
- •7.3.1 Элементы подземного оборудования, их назначение
- •7.4 Виды забоев газовых скважин
- •8.1 Эксплуатация скважин при содержании в газе агрессивных компонентов
- •8.2 Эксплуатация скважин при накоплении жидкости на забое
- •Удаление жидкости из скважины
- •8.3 Эксплуатация скважин при пескопроявлении
- •8.4 Борьба с гидратообразованием в скважинах
- •9.1 Геологические, технические, технологические и экономические условия ограничения дебита
- •9.2 Выбор технологического режима эксплуатации скважин в различных условиях
- •10.1 Солянокислотная обработка
- •10.2 Гидравлический разрыв пласта
- •11.1 Требования отраслевых стандартов к качеству газа и конденсата
- •11.1.1 Требования на качество сухого газа
- •11.1.2 Требования на конденсат
- •11.2 Схемы сбора и внутрипромыслового транспорта газа и конденсата
- •11.3 Промысловые дожимные компрессорные станции.
- •Эксплуатация промысловой дкс характеризуется
- •Требования к газоперекачивающим агрегатам
- •6. Требования к газоперекачивающим агрегатам.
- •12.1 Низкотемпературная сепарация газа
- •12.2 Подготовка газа к транспорту методом абсорбции
- •12.3 Подготовка газа к транспорту методом адсорбции
- •12.4 Подготовка газа при наличии в его составе сероводорода
- •13.1 Покрытие сезонной неравномерности газопотребления
- •13.2 Буферный газ в пхг
- •13.3 Технологическая схема отбора и закачки газа в хранилище.
- •14.1 Хранение газа в истощенных или частично выработанных газовых и газоконденсатных месторождениях
- •14.2 Хранение газа в выработанных нефтяных месторождениях
- •14.3 Пхг в водоносных структурах
- •14.4 Хранение жидких и газообразных продуктов в пустотах непроницаемых горных пород.
- •15.1 Основные проблемы разработки и эксплуатации газовых, газоконденсатных, газонефтяных и нефтегазоконденсатных месторождений
- •15.2 Новые газовые технологии
10.1 Солянокислотная обработка
Солянокислотная и термокислотная обработка призабойных зон скважин дают хорошие результаты в слабопроницаемых карбонатных породах (известняках, доломитах) и песчаниках с карбонатным цементирующим веществом. В песчаниках с глинистым цементирующим материалом эффективна обработка соляной и плавиковой кислотами (так называемой грязевой кислотой).
Солянокислотная обработка основана на способности соляной кислоты растворять карбонатные породы. При этом происходят следующие химические реакции:
в известняках 2НС1 + СаСОз = СаС12 + H2O + СО2;
в доломитах 4НС1 + CaMg (СО3)2 = СаС12 + MgC12 + 2Н2О + 2СО2.
|
Рисунок 10.1 - Схема проведения кислотной обработки |
В зависимости от пластовых условий на практике применяют 8—15%-ную соляную кислоту. Техническая соляная кислота поставляется заводами концентрированной, На промысле ее разбавляют водой до нужной концентрации.
Для снижения коррозии металлического оборудования в процессе СКО используют вещества, называемые ингибиторами коррозии, в качестве которых применяют формалин (CH2O), уникол ПБ-5, И-1-А с уротропином, а такжесульфонол, ДС-РАС, диссольван 4411, нейтрализованный черный контакт (НЧК).
Продукты взаимодействия кислоты с породой удаляются из пласта в процессе освоения скважины. Для облегчения этого процесса в кислоту добавляют интенсификаторы, снижающие поверхностное натяжение продуктов реакции – НЧК, спирты, препарат ДС и другие ПАВ.
Порядок добавления различных реагентов в кислоту при подготовке ее к закачке в скважину следующий: вода — ингибиторы — стабилизаторы (уксусная и плавиковая кислоты) — техническая соляная кислота — хлористый барий — интенсификатор.
Кислота нагнетается в скважину в объеме от 0,5—0,7 до 3—4 м3 на 1 м длины фильтра с помощью специальных агрегатов, например Азинмаш-30, смонтированных на автомашине КрАЗ-219, а также цементировочных агрегатов ЦА-300, ЦА-320М, 2АН-500. Время реакции кислоты с момента окончания закачки не должно превышать 6—8 ч. Результаты определяют по данным исследований скважин после обработки. Обработка считается успешной, если уменьшается коэффициент С, увеличивается дебит скважины при той же депрессии на пласт.
10.2 Гидравлический разрыв пласта
Торпедирование, гидравлический разрыв пласта, гидропескоструйную перфорацию и ядерные взрывы, обычно применяют в пластах, сложенных крепкими, плотными породами, имеющими небольшие проницаемость, пористость, но высокое пластовое давление.
Сущность гидравлического разрыва пласта — создание на забое скважин высокого давления, которое превышало бы местное горное давление на величину, зависящую от прочностных свойств горных пород. При таком увеличении давления в пласте образуются трещины или расширяются ранее существовавшие, что приводит к значительному увеличению проницаемости пласта. Созданные трещины закрепляют крупнозернистым песком.
|
Рисунок 10. 2 - Схема проведения гидравлического разрыва пласта 1-продуктивный пласт; 2-НКТ; 3- эксплуатационная колона; 4- пакер. |
Давление гидравлического разрыва, ориентация и размеры образующихся при этом трещин зависят от горного давления, т. е. давления вышележащих горных пород, характера и параметров естественной трещиноватостигазоносных пород, а также величины пластового давления.
В процессе гидравлического разрыва пласта должны быть созданы такие условия, при которых в пласте возникают и закрепляются трещины. Скорости нагнетания жидкости разрыва должны быть такими, чтобы закачиваемый объем превышал приемистость пласта, подвергающегося гидравлическому разрыву. Необходимая скорость закачки зависит от вязкости жидкости разрыва и параметров призабойной зоны (проницаемости, толщины, конструкция забоя). Из этого следует, что в низкопроницаемых породах гидравлический разрыв может быть при сравнительно малых скоростях закачки с использованием жидкостей небольшой вязкости. В высокопроницаемых породах необходимо применять жидкости разрыва большой вязкости или существенно повышать скорости нагнетания.
Осн: 1[135-138], 2[217-242].
Доп: 6[121-127], 11[156-182]
Контрольные вопросы:
1. Какие существуют методы воздействия на призабойную зону скважин?
2. В каких скважинах целесообразно применение солянокислотной обработки?
3. какие реагенты используют при кислотных обработках?
4. В каких пластах проводят гидравлический разрыв?
5. Что используют в качестве жидкости разрыва?
6. Как осуществляют закрепление трещин при ГРП?
Лекция 11. СБОР ГАЗА НА ПРОМЫСЛЕ
