- •1. Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений.
- •5. Основные свойства цитоплазмы: вязкость, эластичность, подвижность, раздражимость.
- •2. История развития физиологии растений как науки. Роль отечественных учёных в развитии физиологии растений.
- •3. Химические вещества, входящие в состав растительных клеток. Ферменты, их основные свойства и физиологическое значение.
- •6. Мембранный принцип организации поверхности цитоплазмы и органелл клетки. Функции мембран. Аппарат Гольджи, рибосомы, пероксисомы, лизосомы и митохондрии.
- •7. Поступление воды в растительную клетку. Диффузия, осмос. Осмотический потенциал. Методы измерения осмотического потенциала в клетке.
- •8. Поступление солей в растительную клетку. Явление пиноцитоза. Поступление ионов в вакуоль.
- •4. Клеточная оболочка, её структура и физиологические функции. Фазы роста клетки, этапы образования клеточной оболочки у растений.
- •9. Транспирация и её значение. Устьичная и кутикулярная транспирация. Методы устьичного контроля транспирации. Влияние внешних условий на движение устьиц. Типы движения устьиц.
- •10. Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.
- •11. Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
- •13. Верхний и нижний концевые двигатели водного тока. Гуттация и плач растений. Передвижение воды по растению. Апопласт и симпласт. Теория сцепления. Когезия и адгезия.
- •14. Формы воды в почве. Доступная и недоступная вода. Влажность завядания.
- •15. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.
- •17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы д.Ф. Сказкина).
- •18. Методы определения засухоустойчивости растении. Предпосевное закаливание как средство повышения засухоустойчивости растений (работы п.А. Генкеля)
- •19. Типы ксерофитов, их характеристика.
- •20. Поступление питательных веществ в растение.
- •21. Передвижение питательных веществ в растении.
- •22. Почва как источник питательных веществ.
- •23. Особенности питания растений азотом.
- •24. Взаимодействие ионов: антагонизм и синергизм ионов. Уравновешенные растворы.
- •25. Пути обезвреживания аммиака в растении.
- •26 Микроэлементы, их роль в жизни растения.
- •27. Роль серы, магния и железа в жизни растений. Признаки при их недостатке.
- •29 Особенности потребления минеральных элементов в онтогенезе растений.
- •30. Культура растений без почвы: гидропоника, аэропоника, водные культуры.
- •28 Экзосмос и его значение в жизни растения.
- •31. Роль азота, фосфора и калия в жизни растений. Признаки их недостатка.
- •32 Можно ли с помощью удобрений управлять ростом и развитием, химическим составом и качеством урожая?
- •33. Физиологические основы применения удобрений.
- •34. Плодородие почвы и определяющие его факторы: тип почвы, микроорганизмы, растения, деятельность человека.
- •35. Понятие роста и развития растений. Их взаимосвязь.
- •36. Движения растений. Тропизмы и настии.
- •37. Покой как необходимый этап онтогенеза растений.
- •39. Физиолого-биохимические основы формирования семян зерновых культур. Влияние климата и условий выращивания на химический состав зерна.
- •40. Яровизация и фотопериодизм.
- •41. Теория циклического старения и омоложения растений н.П. Кренке.
- •42. Природные и синтетические регуляторы роста и их применение.
- •43. Размножение растений: половое и бесполое.
- •44. Изменения химического состава плодов и ягод при созревании и хранении.
- •45. Типы углеродного питания растений.
- •46. История открытия и изучения фотосинтеза.
- •47. Хлоропласты и их роль в процессе фотосинтеза; структура хлоропластов. Движения хлоропластов. Неассимилирующие хлоропласты.
- •48. Пигменты листа. Спектры поглощения пигментов листа.
- •50. Фотофизический этап фотосинтеза. Понятие о пигментных системах и реакционном центре.
- •51. Пластиды, их структура и функции.
- •52. Фотосинтез как сочетание световых и темновых реакций (исследования ф. Блекмана, д.А. Рихтера и в.И. Любименко).
- •49. Этапы биосинтеза хлорофилла (исследования т.А. Годнева).
- •53. Путь с-4 (цикл Хетча-Слэка-Карпилова). Его особенности.
- •55. Возникновение фотосинтеза в процессе эволюции.
- •56. Влияние условий на процесс фотосинтеза. Методы изучения фотосинтеза.
- •57. Влияние на фотосинтез условий освещения (работы в.Н. Любименко).
- •58. Темновая фаза фотосинтеза. Цикл Кальвина: карбоксилирование, восстановление и регенерация.
- •Фотосистема I и фотосистема II: основные сведения
- •Описание
- •60. Дневной ход фотосинтеза. Фотосинтез и урожай. Зависимость урожая от чистой продуктивности фотосинтеза и величины листовой поверхности (исследования а.А. Ничипоровича).
- •61. Генетическая связь дыхания и брожения.
- •63. Дыхание и фотосинтез как основные энергетические процессы растительного организма. Черты сходства и различия.
- •Отличие дыхания от фотосинтеза
- •62. Влияние внешних и внутренних факторов на процесс дыхания.
- •64. Дыхание как процесс противоположный фотосинтезу.
- •69. Значение дыхания в жизни растительного организма.
- •65. Пентозофосфатный путь дыхательного обмена. Химизм и значение.
- •66. Электронно-транспортная дыхательная цепь.
- •67. Аэробная фаза дыхания (цикл Кребса).
- •68. Анаэробная фаза дыхания (гликолиз). Субстратное фосфорилирование.
- •70. Фотодыхание и его роль.
- •71. Зимостойкость растений. Неблагоприятные факторы осенне-зимне-весеннего периода, их воздействие на растения и меры борьбы с ними.
- •72. Устойчивость растений к недостатку кислорода: морфологические и физиологические приспособления, способы повышения устойчивости.
- •74. Холодоустойчивость растений. Способы повышения холодоустойчивости.
- •75. Солеустойчивость растений. Типы галофитов. Способы повышения устойчивости.
- •73. Морозоустойчивость растений. Физико-химические изменения при замерзании. Повышение морозоустойчивости растений.
17. Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы д.Ф. Сказкина).
На засухоустойчивость влияют удобрения: калийные и фосфорные повышают ее, азотные, особенно в больших дозах, — снижают. Засухоустойчивость ряда сельскохозяйственных культур повышают микроэлементы (цинк, медь и др.). Устойчивости к засухе в полевых условиях способствует выращивание сельскохозяйственных культур с соблюдением зональных технологий их возделывания.
Существование различных типов засухи, региональных ее особенностей сильно затрудняет селекцию сельскохозяйственных растений на засухоустойчивость, требует учета многих видовых, структурно-анатомических и физиолого-биохимических показателей растений. Так, засухоустойчивые сорта зерновых культур при значительном водном дефиците отличаются синтетической направленностью работы ферментных систем, содержат больше связанной воды, имеют повышенную концентрацию клеточного сока, высокий температурный порог коагуляции белков, интенсивное накопление сухого вещества, устойчивую пигментную систему, более четкие признаки ксероморфности и др. Засуха в каждом географическом регионе имеет свои конкретные особенности: преимущественно почвенная или атмосферная, весенняя или летняя, продолжительность и глубина. Эти особенности также определяют выбор критериев для отбора растений.
В онтогенезе растения неодинаково чувствительны к недостатку воды. Очень чувствительны растения к недостатку воды в периоды наибольшего роста конкретного органа или всего растения. Для каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. На I—IV этапах органогенеза злаки относительно устойчивы к засухе, хотя урожай снижается в данном случае за счет уменьшения числа заложившихся колосков в колосе.
На V—VIII этапах устойчивость к засухе злаков снижается, урожай падает за счет уменьшения количества колосков и цветков в колосе (метелке). Засухоустойчивость, как и жаростойкость растений, резко снижается с образованием у них генеративных органов и до цветения (VII—IX этапы) включительно. По Ф. Д. Сказкину, злаки наиболее чувствительны к влаге в период фаз выход в трубку — колошение. Следовательно, в критический период формируются генеративные органы, происходят цветение и оплодотворение.
В период генеративного развития растений на ранних этапах развития засуха приводит к стерильности цветков (к череззерни-це и пустоколосью), а на более поздних (молочная, восковая спелость) — к снижению качества и количества урожая плодов и семян, образованию щуплого зерна, недостаточно заполненного питательными запасными веществами, со слабым зародышем. Важно подчеркнуть, что именно в критические периоды растения наиболее интенсивно растут и формируют хозяйственно полезные органы (плоды, семена и др.).
дефиците. Процессы восстановления идут успешно, если не повреждены при недостатке воды генетические системы клеток. Защита ДНК состоит в частичном выведении молекул из активного состояния с помощью ядерных белков и, возможно, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе.
клеток. Защита ДНК состоит в частичном выведении молекул из активного состояния с помощью ядерных белков и, возможно, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе. Фотосинтез тормозится не сразу: при неглубоком водном дефиците (8—10 %) его интенсивность даже немного возрастает и лишь при сильном и продолжительном — уменьшается.
