- •Что такое Java?
- •История создания Java
- •Сложности внутри Sun Microsystems
- •Проект Green
- •Компания FirstPerson
- •Возрождение OaK
- •Java выходит в свет
- •История развития Java
- •Браузеры
- •Сетевые компьютеры
- •Платформа Java
- •Основные версии и продукты Java
- •Заключение
- •Методология процедурно-ориентированного программирования
- •Методология объектно-ориентированного программирования
- •Объекты
- •Состояние
- •Поведение
- •Уникальность
- •Инкапсуляция
- •Наследование
- •Полиморфизм
- •Типы отношений между классами
- •Агрегация
- •Ассоциация
- •Наследование
- •Метаклассы
- •Достоинства ооп
- •Недостатки ооп
- •Заключение
- •Кодировка
- •Анализ программы
- •Пробелы
- •Комментарии
- •Лексемы
- •Виды лексем
- •Идентификаторы
- •Ключевые слова
- •Литералы
- •Целочисленные литералы
- •Дробные литералы
- •Логические литералы
- •Символьные литералы
- •Строковые литералы
- •Null-литерал
- •Разделители
- •Операторы
- •Пример программы
- •Дополнение. Работа с операторами
- •Операторы присваивания и сравнения
- •Арифметические операции
- •Логические операторы
- •Битовые операции
- •Заключение
- •Введение
- •Имена Простые и составные имена. Элементы
- •Имена и идентификаторы
- •Область видимости (введение)
- •Элементы пакета
- •Платформенная поддержка пакетов
- •Модуль компиляции
- •Объявление пакета
- •Импорт-выражения
- •Объявление верхнего уровня
- •Уникальность имен пакетов
- •Область видимости имен
- •"Затеняющее" объявление (Shadowing)
- •"Заслоняющее" объявление (Obscuring)
- •Соглашения по именованию
- •Заключение
- •Введение
- •Модификаторы доступа
- •Предназначение модификаторов доступа
- •Разграничение доступа в Java
- •Объявление классов
- •Заголовок класса
- •Тело класса
- •Объявление полей
- •Объявление методов
- •Объявление конструкторов
- •Инициализаторы
- •Дополнительные свойства классов
- •Метод main
- •Параметры методов
- •Перегруженные методы
- •Заключение
- •Введение
- •Виды приведений
- •Тождественное преобразование
- •Преобразование примитивных типов (расширение и сужение)
- •Преобразование ссылочных типов (расширение и сужение)
- •Преобразование к строке
- •Запрещенные преобразования
- •Применение приведений
- •Присвоение значений
- •Вызов метода
- •Явное приведение
- •Оператор конкатенации строк
- •Числовое расширение
- •Унарное числовое расширение
- •Бинарное числовое расширение
- •Тип переменной и тип ее значения
- •Заключение
- •Статические элементы
- •Ключевые слова this и super
- •Ключевое слово abstract
- •Интерфейсы
- •Объявление интерфейсов
- •Реализация интерфейса
- •Применение интерфейсов
- •Полиморфизм
- •Полиморфизм и объекты
- •Заключение
- •Массивы как тип данных в Java
- •Объявление массивов
- •Инициализация массивов
- •Многомерные массивы
- •Класс массива
- •Преобразование типов для массивов
- •Ошибка ArrayStoreException
- •Переменные типа массив и их значения
- •Клонирование
- •Клонирование массивов
- •Заключение
- •Управление ходом программы
- •Нормальное и прерванное выполнение операторов
- •Блоки и локальные переменные
- •Пустой оператор
- •Оператор if
- •Оператор switch
- •Управление циклами
- •Цикл while
- •Цикл do
- •Цикл for
- •Операторы break и continue
- •Оператор continue
- •Оператор break
- •Именованные блоки
- •Оператор return
- •Оператор synchronized
- •Ошибки при работе программы. Исключения (Exceptions)
- •Причины возникновения ошибок
- •Обработка исключительных ситуаций Конструкция try-catch
- •Конструкция try-catch-finally
- •Использование оператора throw
- •Проверяемые и непроверяемые исключения
- •Создание пользовательских классов исключений
- •Переопределение методов и исключения
- •Особые случаи
- •Заключение
- •Введение
- •Дерево компонентов
- •Положение
- •Видимость
- •Доступность
- •Алгоритм отрисовки
- •Методы класса Graphics для отрисовки
- •Состояние Graphics
- •Clip (ограничитель)
- •Методы repaint и update
- •Прорисовка контейнера
- •Наследники класса Component
- •Класс Canvas
- •Класс Label
- •Класс Button
- •Классы Checkbox и CheckboxGroup
- •Классы Choice и List
- •Классы TextComponent, TextField, TextArea
- •Класс Scrollbar
- •Наследники Container
- •Класс Panel
- •Класс ScrollPane
- •Класс Window
- •Классы Frame и Dialog
- •Класс FileDialog
- •Обработка пользовательских событий
- •Событие ActionEvent
- •События awt
- •Обработка событий с помощью внутренних классов
- •Пример приложения, использующего модель событий
- •Апплеты
- •Жизненный цикл апплета
- •Передача параметров
- •Интерфейс AppletContext
- •Менеджеры компоновки
- •Класс FlowLayout
- •Класс BorderLayout
- •Класс GridLayout
- •Класс CardLayout
- •Заключение
- •Введение
- •Многопоточная архитектура
- •Базовые классы для работы с потоками Класс Thread
- •Интерфейс Runnable
- •Работа с приоритетами
- •Демон-потоки
- •Синхронизация
- •Хранение переменных в памяти
- •Модификатор volatile
- •Блокировки
- •Методы wait(), notify(), notifyAll() класса Object
- •Заключение
- •Введение
- •Классы-обертки
- •Системные классы
- •SecurityManager – менеджер безопасности
- •Потоки исполнения
- •Исключения
- •Заключение
- •Работа с датами и временем Класс Date
- •Классы Calendar и GregorianCalendar
- •Метод set(int field,int value).
- •Метод add(int field,int delta).
- •Метод roll(int field,int delta).
- •Класс TimeZone
- •Класс SimpleTimeZone
- •Интерфейс Observer и класс Observable
- •Коллекции
- •Интерфейсы Интерфейс Collection
- •Интерфейс Set
- •Интерфейс List
- •Интерфейс Map
- •Интерфейс SortedSet
- •Интерфейс SortedMap
- •Интерфейс Iterator
- •Aбстрактные классы, используемые при работе с коллекциями
- •Конкретные классы коллекций
- •Класс Collections
- •Класс Properties
- •Интерфейс Comparator
- •Класс Arrays
- •Класс StringTokenizer
- •Класс BitSet
- •Класс Random
- •Локализация Класс Locale
- •Класс ResourceBundle
- •Классы ListResourceBundle и PropertiesResourceBundle
- •Заключение
- •Система ввода/вывода. Потоки данных (stream)
- •Классы InputStream и OutputStream
- •Классы-реализации потоков данных Классы ByteArrayInputStream и ByteArrayOutputStream
- •Классы FileInputStream и FileOutputStream
- •Классы FilterInputStream и FilterOutputStream и их наследники
- •Сериализация объектов (serialization)
- •Стандартная сериализация
- •Восстановление состояния
- •Граф сериализации
- •Расширение стандартной сериализации
- •Классы Reader и Writer и их наследники
- •Класс StreamTokenizer
- •Работа с файловой системой Класс File
- •Класс RandomAccessFile
- •Заключение
- •Основы модели osi
- •Класс a
- •Класс b
- •Класс c
- •Подсети. Маска подсети
- •Протоколы arp, rarp
- •Утилиты для работы с сетью
- •Пакет java.Net
- •Заключение
Недостатки ооп
Документирование классов - задача более трудная, чем это было в случае процедур и модулей. Поскольку любой метод может быть переопределен, в документации должно говориться не только о том, что делает данный метод, но и о том, в каком контексте он вызывается. Ведь переопределенные методы обычно вызываются не клиентом, а самим каркасом. Таким образом, программист должен знать, какие условия выполняются, когда вызывается данный метод. Для абстрактных методов, которые пусты, в документации должно говориться о том, для каких целей предполагается использовать переопределяемый метод.
В сложных иерархиях классов поля и методы обычно наследуются с разных уровней. И не всегда легко определить, какие поля и методы фактически относятся к данному классу. Для получения такой информации нужны специальные инструменты, вроде навигаторов классов. Если конкретный класс расширяется, то каждый метод обычно сокращают перед передачей сообщения базовому классу. Реализация операции, таким образом, рассредотачивается по нескольким классам, и чтобы понять, как она работает, нам приходится внимательно просматривать весь код.
Методы, как правило, короче процедур, поскольку они осуществляют только одну операцию над данными, зато их намного больше. В коротких методах легче разобраться, но они неудобны тем, что код для обработки сообщения иногда "размазан" по многим маленьким методам.
Инкапсуляцией данных не следует злоупотреблять. Чем больше логики и данных скрыто в недрах класса, тем сложнее его расширять. Отправной точкой здесь должно быть не то, что клиентам не разрешается знать о тех или иных данных, а то, что клиентам для работы с классом этих данных знать не требуется.
Многие считают, что ООП является неэффективным. Как же обстоит дело в действительности? Мы должны проводить четкую грань между неэффективностью на этапе выполнения, неэффективностью в смысле распределения памяти и неэффективностью, связанной с излишней универсализацией.
Неэффективность на этапе выполнения. В языках типа Smalltalk сообщения интерпретируются во время выполнения программы путем осуществления их поиска в одной или нескольких таблицах и за счет выбора подходящего метода. Конечно, это медленный процесс. И даже при использовании наилучших методов оптимизации Smalltalk-программы в десять раз медленнее оптимизированных C-программ.
В гибридных языках типа Oberon-2, Object Pascal и C++ отправка сообщения приводит лишь к вызову через указатель процедурной переменной. На некоторых машинах сообщения выполняются лишь на 10% медленнее, чем обычные процедурные вызовы. И поскольку сообщения встречаются в программе гораздо реже других операций, их воздействие на время выполнения влияния практически не оказывает.
Однако существует другой фактор, который влияет на время выполнения: это инкапсуляция данных. Рекомендуется не предоставлять прямой доступ к полям класса, а выполнять каждую операцию над данными через методы. Такая схема приводит к необходимости выполнения процедурного вызова каждый раз при доступе к данным. Однако если инкапсуляция используется только там, где она необходима (т.е. в тех случаях, когда это становится преимуществом), то замедление вполне приемлемое.
Неэффективность в смысле распределения памяти. Динамическое связывание и проверка типа на этапе выполнения требуют по ходу работы информации о типе объекта. Такая информация хранится в дескрипторе типа и он выделяется один на класс. Каждый объект имеет невидимый указатель на дескриптор типа для своего класса. Таким образом, в объектно-ориентированных программах необходимая дополнительная память выражается в одном указателе для объекта и в одном дескрипторе типа для класса.
Излишняя универсальность. Неэффективность также может означать, что в программе реализованы избыточные возможности. В библиотечном классе часто содержится больше методов, чем это реально необходимо. А поскольку лишние методы не могут быть удалены, они становятся мертвым грузом. Это не влияет на время выполнения, но сказывается на размере кода.
Одно из возможных решений - строить базовый класс с минимальным числом методов, а затем уже реализовывать различные расширения этого класса, которые позволят нарастить функциональность. Другой подход - дать компоновщику возможность удалять лишние методы. Такие интеллектуальные компоновщики уже существуют для различных языков и операционных систем.
Но нельзя утверждать, что ООП неэффективно. Если классы используются лишь там, где это действительно необходимо, то потеря эффективности из-за повышенного расхода памяти и меньшей производительности незначительна. Кроме того, надежность программного обеспечения и быстрота его написания часто бывает важнее, чем производительность.
