- •Учебное издание
- •Содержание
- •Введение
- •Лабораторная работа № 1. Изучение методов и приборов для измерения температуры и давления
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Методы и приборы для измерения температуры
- •1. К термометрам для измерения температуры контактным методом относятся:
- •2. К пирометрам для измерения температуры бесконтактным методом на основе использования теплового излучения относятся:
- •4.1.1. Жидкостные стеклянные термометры
- •4.1.2. Биметаллические (дилатометрические) термометры
- •4.1.3. Термоэлектрические термометры
- •4.1.4. Термометры сопротивления
- •4.1.5. Манометрические термометры
- •4.1.6. Пирометры излучения
- •4.1.7. Тепловизоры
- •4.2. Методы и приборы для измерения давления
- •4.2.1. Классификация основных методов и приборов для измерения давления
- •4.2.2. Манометры
- •4.2.3. Мановакуумметры
- •4.2.4. Барометры
- •4 .2.5. Другие приборы для измерения давления
- •4.2.6. Единицы измерения давления
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 2. Изучение способов передачи теплоты и современных теплоизоляционных материалов
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Основные виды теплообмена
- •4.2. Теплопроводность
- •4.3. Конвекция
- •4.4. Тепловое излучение
- •4.5. Теплопередача через плоскую стенку
- •4.2. Теплоизоляционные материалы
- •4.2.1. Классификация теплоизоляционных материалов
- •4.2.2. Органические теплоизоляционные материалы
- •Другие вспененные полимерные материалы
- •4.2.3. Неорганические теплоизоляционные материалы
- •4.2.4. Где применяются основные теплоизоляционные материалы
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 3. Изучение теплообменных устройств и методов их правильного выбора и эффективного использования
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Виды теплообменников
- •4.2. Рекуперативные (поверхностные) теплообменники
- •Теплообменники типа «труба в трубе»
- •Кожухотрубные теплообменники
- •Спиральные теплообменники
- •Пластинчатые теплообменники
- •Ребристые теплообменники
- •4.3. Выбор и эксплуатация рекуперативных теплообменников
- •4.4. Регенеративные теплообменники
- •4.5. Смесительные теплообменники
- •4.6. Расчет теплообменных аппаратов
- •4.7. Борьба с накипью в системах теплоснабжения Способы борьбы с отложениями в системах теплоснабжения
- •1. Водоподготовка
- •2. Механическое удалеиие накипи
- •3. Замена теплообменников и систем отопления
- •4. Очистка теплообменников и системы отопления
- •Физические методы
- •Химические методы
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 4. Виды топлива и его технический анализ. Изучение процесса горения и устройств для его обеспечения
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Виды топлива и его основные характеристики
- •4.2. Технический анализ твердого топлива
- •4.3. Процессы горения топлива
- •4.3.1. Реакции горения и газификации
- •4.3.2. Гомогенное горение. Кинетика химических реакций
- •4.3.3. Особенности горения газообразного топлива
- •4.3.4. Нижний и верхний пределы взрываемости горючих газов
- •4.3.5. Особенности горения жидкого топлива
- •4.3.6. Горение твердого топлива (гетерогенное горение)
- •4.4. Конструкции различных топок
- •4.5. Горелки для сжигания газа
- •4.5.1. Газовые плиты и горелки газовых плит
- •4.5.2. Газовые водонагревательные колонки и их горелки
- •4.5.3. Газовые горелки для котельных установок
- •1. Горелки без предварительного смешения газа с воздухом
- •Горелки предварительного смешения газа с воздухом
- •Горелки с частичным смешением газа с воздухом
- •4.5.4. Принципы организации сжигания газообразного топлива
- •4.6. Форсунки и горелки для сжигания жидкого топлива
- •4.6.1. Особенности применения топливных форсунок
- •Распыливающие форсунки
- •Пневматические форсунки
- •4.6.2. Форсунки испарительного типа (горелки)
- •Капиллярные горелки
- •Капсульные горелки
- •4.6.3. Управление форсунками и горелками, их регулировка
- •4.7. Сжигание мазута и печного топлива в топках
- •4.8. Сжигание жидкого топлива в печах разного назначения
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 5. Изучение котельных установок
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Общие сведения и понятия о котельных установках
- •4.2. Классификация котельных установок
- •4.3. Классификация котельных агрегатов
- •Конструкции различных котлов и горение топлива в них
- •4.4.1. Котлы для сжигания твердого топлива и горение в них
- •4.4.2. Котлы для сжигания жидкого топлива и горение в них
- •4.4.3. Котлы для сжигания газа и горение в них
- •Модульные котельные
- •Основные элементы паровых и водогрейных котлов
- •Барабаны паровых котлов
- •Пароперегреватели котлов
- •Водяные экономайзеры
- •Воздухоподогреватели
- •Предохранительные устройства и контрольно-измерительные приборы
- •Водоподготовка и водно-химический режим
- •Размещение и компоновка котельных
- •Особенности размещения котлов и дымоходов в домах
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 6. Изучение цикла четырехтактного карбюраторного двигателя внутреннего сгорания и определение его основных термодинамических характеристик
- •4.1.2. Процесс работы двухтактного карбюраторного двигателя
- •Принцип работы двигателя
- •4.1.3. Процесс работы четырехтактного карбюраторного двигателя
- •4.1.4. Идеальные циклы поршневых двигателей внутреннего сгорания и происходящие при этом процессы
- •4.2. Идеальные циклы поршневых двигателей внутреннего сгорания
- •4.3. Цикл Отто
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 7. Изучение холодильных машин и установок
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Общие сведения
- •4.2. Термодинамические циклы холодильных установок
- •4.2.1. Воздушные холодильные установки
- •4.2.2. Парокомпрессорные холодильные установки
- •4.2.3. Пароэжекторные холодильные установки
- •4.3. Бытовые и промышленные холодильники
- •4.3.1. Принцип работы компрессионного холодильника
- •4.3.2. Принцип работы абсорбционного холодильника
- •4.3.3. Принцип работы термоэлектрического холодильника
- •4.3.4. Принцип работы холодильника на вихревых охладителях
- •4.4. Устройство холодильного шкафа Тепловая изоляция
- •Уплотнитель двери
- •Циркуляция воздуха в камерах
- •Автоматика и электрооборудование
- •Компоновка
- •Условные обозначения
- •Технические характеристики холодильников
- •Эксплуатация холодильников
- •4.5. Примеры холодильных установок
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •Контрольные вопросы
- •Лабораторная работа № 8. Изучение систем водяного отопления
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Системы водяного отопления
- •4.2. Системы отопления с естественной циркуляцией воды
- •4.2.1. Двухтрубные системы отопления с верхней разводкой
- •4.2.2. Двухтрубные системы отопления с нижней разводкой
- •4.2.3. Однотрубные системы отопления с естественной циркуляцией
- •4.3. Системы водяного отопления с насосной циркуляцией
- •Виды радиаторов
- •Цельные алюминиевые радиаторы
- •Секционные алюминиевые радиаторы
- •Стальные панельные радиаторы
- •Стальные секционные радиаторы
- •Стальные трубчатые радиаторы
- •Биметаллические радиаторы
- •4.4.1.2. Конвекторы
- •Конвекторы, встраиваемые в пол
- •Плинтусные конвекторы
- •Газовые конвекторы
- •4.4.2. Баки-аккумуляторы
- •4.4.2.1. Открытый расширительный бак
- •4.4.2.2. Закрытый расширительный бак
- •4.4.3. Воздухоотводчики
- •4.4.3.1. Места установки воздухоотводчиков
- •4.4.3.2. Автоматические воздухоотводчики
- •4.4.3.3. Ручные воздухоотводчики (краны Маевского)
- •4.4.4. Радиаторные термостаты
- •4.4.5. Арматура систем водяного отопления
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 9. Изучение систем вентиляции и кондиционирования воздуха, методов их выбора и эксплуатации
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •4.1.1.1. Осевые (аксиальные) вентиляторы
- •4.1.1.2. Центробежные (радиальные) вентиляторы
- •4.1.1.5. Многозональные вентиляторы
- •4.1.1.6. Канальные вентиляторы
- •4.1.1.7. Крышные вентиляторы
- •4.1.1.8. Бытовые вентиляторы
- •4.1.1.9. Конструкции вентиляторов
- •4.2. Классификация и обслуживание систем вентиляции
- •4.3. Воздушные и воздушно-тепловые завесы
- •4.4. Системы кондиционирования воздуха
- •4.4.1. Классификация кондиционеров
- •4.4.2. Устройство и принцип работы кондиционеров
- •4.4.2.1. Кондиционеры компрессионного типа
- •4.4.2.2. Кондиционеры испарительного типа
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 10. Изучение устройства и правил монтажа и эксплуатации систем теплоснабжения и тепловых сетей
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация систем теплоснабжения
- •4.2. Назначение и классификация тепловых сетей
- •4.3. Основные элементы тепловых сетей
- •4.3.1. Трубы и теплоизоляция для тепловых сетей
- •4.3.2. Подвижные опоры
- •– Направляющие планки; 3 – опорная плита; 4 – катки.
- •4.3.3. Неподвижные опоры
- •4.3.4. Компенсаторы температурных удлинений
- •4.3.4.1. Участки самокомпенсации температурных удлинений
- •4.3.4.3. Сальниковые компенсаторы
- •4.3.4.4. Линзовые и сильфонные компенсаторы
- •4.3.5. Тепловые камеры
- •4.4. Прокладка тепловых сетей
- •4.4.1. Подземная прокладка
- •4.4.1.1. Канальная прокладка
- •4.4.1.2. Бесканальная прокладка
- •Надземная прокладка
- •4.5. Выбор и расчет тепловой изоляции оборудования и труб
- •4.5.1. Тепловая изоляция оборудования и трубопроводов
- •4.5.2. Система оперативного дистанционного контроля состояния теплотрасс (гост 30732-2006)
- •Стационарный детектор повреждений Особенности детектора
- •Места подключения
- •Порядок подключения
- •Порядок эксплуатации
- •Монтаж детекторов на объекте
- •Контрольно-монтажный тестер «Robin kmp 3050 dl» Назначение
- •Подготовка прибора к работе
- •Место и способ подключения
- •При контроле на заводе и перед монтажом системы одк
- •Во время ведения монтажных работ
- •После окончания монтажа системы одк, при приёмке/сдаче в эксплуатацию и в период эксплуатации
- •Оценка работоспособности системы одк
- •Монтаж приборов и оборудования
- •Монтаж приборов и оборудования
- •2. Теплоизоляция с целью обеспечения заданной температуры на поверхности
- •3. Изоляция трубопроводов от замерзания содержащихся в них жидкостей
- •4. Теплоизоляция трубопровода от конденсации влаги на поверхности теплоизоляции
- •5. Теплоизоляция трубопроводов тепловых сетей двухтрубной подземной канальной прокладки
- •4.6.2. Теплотехнические расчеты тепловой изоляции труб
- •Термическое сопротивление поверхности
- •Термическое сопротивление слоя
- •Термическое сопротивление изоляционных конструкций надземных теплопроводов
- •Температурное поле надземного теплопровода
- •Термическое сопротивление грунта
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 11. Присоединение потребителей к тепловой сети, оборудование узлов ввода и учета
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Схемы присоединения потребителей к тепловой сети
- •4.1.1. Присоединение систем отопления к тепловой сети
- •4.1.1.1. Независимая схема присоединения систем отопления
- •4.1.1.2. Зависимые схемы присоединения систем отопления
- •4.1.2. Присоединение систем горячего водоснабжения к тепловой сети
- •4.2. Тепловые пункты
- •4.3. Узлы ввода и учета тепловой энергии и воды в зданиях
- •4.3.1. Тепловые вводы
- •4.3.2. Монтаж узла ввода итп
- •4.3.3. Монтаж узла присоединения системы
- •4.3.4. Монтаж узла присоединения системы отопления итп
- •4.3.5. Узлы учёта тепловой энергии
- •4.3.6. Узлы учета воды
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 12. Счетчики воды, их выбор, монтаж и использование
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация счетчиков воды
- •4.2. Тахометрические (механические) водосчетчики
- •Разновидности тахометрических водосчетчиков Одноструйные водосчетчики
- •Достоинства:
- •Многоструйные
- •Достоинства:
- •Вентильные
- •Достоинства:
- •Турбинные (счетчики Вольтманна)
- •4.3. Электронные водосчетчики
- •Принципиальное устройство электронных счетчиков воды
- •Преимущества электронных водосчетчиков:
- •4.4. Электромагнитные водосчетчики
- •4.5. Ультразвуковые водосчетчики
- •4.6. Вихревые водосчетчики
- •4.7. Основные правила установки счетчиков воды
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 13. Счетчики газа, их выбор, монтаж и использование
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация счетчиков газа
- •Классификация счетчиков газа по принципу действия Мембранные (диафрагменные, камерные)
- •Преимущества:
- •Недостатки:
- •Барабанные
- •Преимущества:
- •Вихревые
- •Преимущества:
- •Недостатки:
- •Основанные на методе перепада давления на сужающем устройстве
- •Ротационные
- •Преимущества:
- •Недостатки:
- •Струйные
- •Преимущества:
- •Недостатки:
- •Турбинные
- •Преимущества:
- •Недостатки:
- •Ультразвуковые
- •4.2. Выбор газового счетчика и его установка
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 14. Теплосчетчики, их выбор, монтаж и использование
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация теплосчетчиков
- •4.1.1. Тахометрические теплосчетчики
- •4.1.2. Электромагнитные теплосчетчики
- •4.1.3. Ультразвуковые теплосчетчики
- •4.1.4. Вихревые теплосчетчики
- •4.2. Конструктивное исполнение теплосчетчиков
- •4.3. Особенности эксплуатации теплосчетчиков
- •4.4. Некоторые рекомендации по выбору теплосчетчиков
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 15. Водонагреватели, их выбор, монтаж и использование
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация водонагревателей
- •4.1.1. Проточные (скоростные) водонагреватели
- •4.1.2. Накопительные (емкостные) водонагреватели
- •4.1.3. Необходимая мощность для нагрева воды
- •4.1.4. Двухконтурные водонагреватели
- •4.1.4.1. Двухконтурные газовые котлы косвенного нагрева
- •4.1.4.2. Двухконтурные электрические котлы
- •4.1.5. Инновационные портативные многофункциональные водо- и воздухонагреватели-«трансформеры» класса «ранит»
- •4.1.5.1. Области применения этого инновационного проекта:
- •4.1.5.2. Актуальность данного инновационного проекта
- •4.1.5.3. Цели и задачи данного инновационного проекта
- •4.1.5.4. Главная идея данного инновационного проекта
- •4.1.5.5. Преимущества портативных многофункциональных водо- и воздухонагревателей-«трансформеров» класса «ранит»
- •Преимущества нагревателей класса «ранит» по сравнению с аналогами, делающие их уникальным товаром для экспорта
- •4.1.5.6. Проект программы взаимовыгодного сотрудничества для организации производства, сбыта и экспорта нагревателей
- •4.2. Виды коррозии и методы защиты водонагревателей
- •4.2.1. Гальваническая коррозия
- •4.2.2. Электролитическая коррозия
- •Принцип действия магниевого анода
- •4.2.3. Защита внутреннего бака водонагревателя от коррозии
- •4.3. Необходимость заземлять электрический водонагреватель
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 16. Нагревательные элементы
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Классификация нагревательных элементов
- •4.1.1. Электронагреватели сопротивления
- •4.1.1.1. Трубчатые электрические нагреватели (тэн)
- •Оребренные трубчатые нагревательные элементы
- •Патронные трубчатые нагревательные элементы
- •Блоки трубчатых нагревательных элементов
- •4.1.2. Плоские и пленочные нагревательные элементы
- •4.1.3. Нагревательные электрические кабели
- •4.1.3.1. Резистивные кабели
- •Армированный кабель
- •Бронированный кабель
- •4.1.3.2. Саморегулирующийся нагревательный кабель
- •4.1.3.3. Применение нагревательного кабеля
- •4.1.4. Керамические нагреватели
- •4.1.4.1. Керамические инфракрасные нагреватели
- •4.1.4.2. Инфракрасные керамические лампы Эдисона
- •4.1.4.3. Кварцевые и галогеновые излучатели
- •4.1.4.4. Нагревательные элементы для обогрева плоскостей
- •4.1.4.5. Силиконовые нагревательные элементы
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Лабораторная работа № 17. Выбор и использование методов, оборудования и материалов для энергосбережения
- •1. Цели и задачи лабораторной работы
- •2. Задание
- •3. Необходимое оборудование и приборы
- •4. Краткие теоретические сведения
- •4.1. Необходимость энергосбережения
- •4.2. Методы энергосбережения
- •4.2.1. Методы энергосбережения в повседневной жизни
- •4.2.2. Методы уменьшения энергопотребления зданий
- •4.3. Тепловые потери и способы их уменьшения
- •4.4. Энергосберегающие лампы
- •4.5. Использование солнечной энергии
- •5. Руководство по выполнению лабораторной работы
- •6. Требования к оформлению отчета
- •7. Контрольные вопросы
- •Литература и информационные ресурсы
4.3.6. Горение твердого топлива (гетерогенное горение)
Примеры горения свечи и древесины показан на рис. 11-12.
Рис. 11. Распределение температур в пламени при горении.
Рис. 12. Этапы сгорания древесины.
Слоевое сжигание твердого топлива в печах показано на рис. 13.
Для горения топлива нужно количество воздуха, превышающее в несколько раз по весу количество топлива. При продувании слоя топлива воздухом сила аэродинамического давления потока Р может быть меньше веса кусочка топлива G или, наоборот, больше его (рис. 14-15).
Рис. 13. Слоевое сжигание твердого топлива в печах.
В топках с «кипящим слоем» «кипение» связано с разъединением частиц топлива, что увеличивает объем слоя в 1,5-2,5 раза. Движение частиц топлива (обычно они от 2 до 12 мм) похоже на движение кипящей жидкости, почему такой слой и получил название «кипящего».
Рис. 14. Изменение «кипящего» слоя при различных количествах воздуха,
подаваемого для горения.
В топках с «кипящим» слоем газо-воздушный поток не циркулирует в слоевой зоне, а прямоточно продувает слой (рис. 14-15). Поток воздуха, пронизывающий слой, испытывает неоднородное торможение, что создает сложное поле скоростей, в котором частицы все время меняют свою парусность в зависимости от положения в потоке. Частицы при этом приобретают вращательно-пульсирующее движение, которое и создают впечатление кипящей жидкости.
Процесс сгорания твердого топлива может быть условно разделен на стадии, накладывающиеся одна на другую. Эти стадии протекают в разных температурных и тепловых условиях и требуют различного количества окислителя.
Свежее топливо, поступающее в топку, подвергается более или менее быстрому нагреванию, из него испаряется влага и выделяются летучие вещества - продукты сухой перегонки топлива. Одновременно протекает процесс коксообразования. Кокс сгорает и частично газифицируется на колосниковой решетке, а газообразные продукты сгорают в топочном пространстве. Негорючая минеральная часть топлива при сгорании топлива превращается в шлак и золу.
Рис. 15. Сжигание твердого топлива в слоевых и камерных топках.
4.4. Конструкции различных топок
Топочным устройством или топкой называют часть котельного агрегата, которая предназначена для сжигания топлива и выделения химически связанной в нем теплоты. Вместе с тем топка является теплообменным устройством, в котором поверхностям нагрева отдается излучением часть тепла, выделившегося при горении топлива. Кроме того, при сжигании твердого топлива в топке выпадает некоторая часть образующейся золы.
В соответствии с видом сжигаемого топлива различают топки для сжигания твердого, жидкого и газообразного топлива. Кроме того, есть топки, в которых одновременно можно сжигать различные виды топлива: твердое с жидким или газообразным, жидкое и газообразное.
Существуют три основных способа сжигания топлива: в слое, факеле и вихре (циклоне). В соответствии с этим топки разделяют на три больших класса: слоевые, факельные и вихревые. Факельные и вихревые топки часто объединяют в общий класс камерных топок.
Рис. 16.
Классификация слоя при сжигании
твердого топлива: а
– плотный слой; б
- «кипящий» слой; в
и г
– взвешенный слой (гетерогенные
факелы).
В слое топливо сжигают под котельными агрегатами паропроизводительностью до 20-35 т/ч. В слое можно сжигать только твердое кусковое топливо, например: бурые и каменные угли, кусковой торф, горючие сланцы, древесину. Топливо, подлежащее сжиганию в слое, загружают на колосниковую решетку, на которой оно лежит плотным слоем. Горение топлива происходит в струе воздуха, пронизывающего этот слой обычно снизу вверх.
Топки для сжигания топлива в слое разделяют на три класса (рис. 17):
1 – топки с неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива (рис. 17, а и б);
2 – топки с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (рис. 17, в, г);
3 – топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива (рис. 17, д, е, ж).
Рис. 17. Схемы топок для сжигания топлива в слое: а – ручная горизонтальная колосниковая решетка; б – топка с забрасывателем на неподвижный слой; в – топка с цепной механической решеткой; г – топка с механической цепной
решеткой обратного хода и забрасывателем; д – топка с шурующей планкой; е – топка с колосниковой решеткой; ж – топка системы Померанцева.
Самой простой топкой с неподвижной колосниковой решеткой и неподвижным слоем топлива является топка с ручной горизонтальной колосниковой решеткой (рис. 17, а). На этой решетке можно сжигать твердое топливо всех видов, но необходимость ручного обслуживания ограничивает область применения ее в котлах очень малой паропроизводительности (до 1-2 т/ч).
Для слоевого сжигания топлива под котлами большей паропроизводительности механизируют обслуживание топки и прежде всего - подачу в нее свежего топлива.
В топках с неподвижной решеткой и неподвижным слоем топлива механизация загрузки осуществляется применением забрасывателей 1, которые непрерывно механически загружают свежее топливо и разбрасывают его по поверхности колосниковой решетки 2 (рис. 17, б). В таких топках можно сжигать каменные и бурые угли, а иногда и антрацит под котлами паропроизводительностью до 6,5-10,0 т/ч.
К классу топок с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива, относят топки с механической цепной решеткой (рис. 17, в), которые выполняют в различных модификациях. В этой топке топливо из загрузочной воронки 1 поступает самотеком на переднюю часть медленно движущегося бесконечного цепного колосникового полотна 2, которым оно подается в топку. Горящее топливо непрерывно перемещается по топке вместе с полотном решетки. При этом оно полностью сгорает, после чего образовавшийся в конце решетки шлак ссыпается в шлаковый бункер 3.
Топки с цепной решеткой чувствительны к качеству топлива. Лучше всего они подходят для сжигания сортированных неспекающихся умеренно влажных и умеренно зольных углей с относительно высокой температурой плавления золы и выходом летучих веществ VГ = 10-25 % на горючую массу. В таких топках можно также сжигать сортированный антрацит. Для работы на спекающихся углях, а также на углях с легкоплавкой золой топки с цепной решеткой непригодны. Эти топки можно устанавливать под котлами паропроизводительностью от 10 до 150 т/ч, но в России их устанавливают под паровыми котлами паропроизводительностью 10-35 т/ч главным образом для сжигания сортированного антрацита.
Для сжигания топлива большой влажности, в частности кускового торфа, цепную решетку комбинируют с шахтным предтопком, который нужен для предварительной сушки топлива. Самая распространенная шахтно-цепная топка – это топка профессора Т. Ф. Макарьева.
Другим типом топки рассматриваемого класса являются топки с цепной решеткой обратного хода и забрасывателем. В этих топках колосниковое полотно решетки движется в обратном направлении, т. е. от задней стенки топки к передней. На фронтальной стене топки размещены забрасыватели, непрерывно подающие топливо на полотно. Выгоревший шлак ссыпается с решетки в шлаковый бункер, размещенный под передней частью топки. Топки рассматриваемого типа значительно меньше чувствительны к качеству топлива, чем топки с решеткой прямого хода, поэтому их применяют для сжигания как сортированных, так и не сортированных каменных и бурых углей под котлами паропроизводительностью 10-35 т/ч.
Топки с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива основаны на различных принципах организации процессов движения и горения топлива. В топках с шурующей планкой топливо перемещается вдоль неподвижной горизонтальной колосниковой решетки специальной планкой особой формы, движущейся возвратно-поступательно по колосниковому полотну. Применяют их для сжигания бурых углей под котлами паропроизводительностью до 6,5 т/ч. Разновидностью топки с шурующей планкой является факельно-слоевая топка системы профессора С. В. Татищева, получившая применение для сжигания фрезерного торфа под котлами паропроизводительностью до 75 т/ч. Она отличается от обычной топки с шурующей планкой наличием шахтного предтопка, в котором происходит предварительная подсушка фрезерного торфа дымовыми газами, засасываемыми в шахту специальным эжектором. В этой топке можно также сжигать бурые и каменные угли.
В топках с наклонной колосниковой решеткой и скоростных топках системы В. В. Померанцева топливо, поступив в топку сверху, при сгорании сползает под действием силы тяжести в нижнюю часть топки, позволяя поступать в топку новым порциям топлива. Эти топки применяют для сжигания древесных отходов под котлами паропроизводительностью от 2,5 до 20 т/ч, а шахтные топки и для сжигания кускового торфа - под котлами паропроизводительностью до 6,5 т/ч.
В связи с особенностями топливного баланса России, в котором используют в основном каменные и отчасти бурые угли, больше всего распространены топки с забрасывателями и механические цепные решетки. Топки же, предназначенные для сжигания торфа, сланцев и древесины, распространены значительно меньше, так как топливо этих видов в топливном балансе России играет второстепенную роль.
В факельном процессе можно сжигать топливо твердое, жидкое и газообразное. При этом:
- газообразное топливо не требует какой-либо предварительной подготовки;
- твердое топливо должно быть предварительно размолото в тонкий порошок в особых пылеприготовительных установках, основным элементом которых являются углеразмольные мельницы;
- жидкое топливо должно быть распылено на очень мелкие капли в специальных форсунках.
Жидкое и газообразное топливо сжигают под котлами любой паропроизводительности, а пылевидное топливо - под котельными агрегатами паропроизводительностью начиная от 35-50 т/ч и выше.
Сжигание в факельном процессе топлива каждого из трех видов отличается конкретными особенностями, но общие принципы факельного способа сжигания остаются одинаковыми для всякого топлива.
Факельная топка (рис. 18) представляет собой прямоугольную камеру 1, выполненную из огнеупорного кирпича, в которую через горелки 2 вводят в тесном контакте топливо и воздух, необходимый для его горения, то есть топливо-воздушную смесь. Эта смесь воспламеняется и сгорает в образовавшемся факеле. Газообразные продукты сгорания покидают топку в ее верхней части. При сжигании пылевидного топлива с этими продуктами сгорания в газоходы котла уносится и значительная часть золы топлива, а остальное количество золы выпадает в нижнюю часть (шлаковую воронку) топки в виде шлака.
Рис.
18.
Схемы камерных топок: a
– однокамерная топка для пылевидного
топлива с твердым шлакоудалением;
б – однокамерная топка для пылевидного
топлива с жидким шлакоудалением; в
– топка для жидкого и газообразного
топлива; г – топка с полуоткрытой
топочной камерой для сжигания
пылевидного топлива.
Стены топочной камеры изнутри покрывают системой охлаждаемых водой труб - топочными водяными экранами. Эти экраны имеют назначение предохранить кладку топочной камеры от износа и разрушения под действием высокой температуры факела и расплавленных шлаков, но главное - они представляют собой эффективную поверхность нагрева, воспринимающую большое количество тепла, излучаемого факелом. Поэтому эти топочные экраны становятся очень эффективным средством охлаждения дымовых газов в топочной камере.
Факельные топки для пылевидного топлива разделяют на два класса по способу удаления шлака: а) топки с удалением шлака в твердом состоянии; б) топки с жидким шлакоудалением.
Камера 1 топки с удалением шлака в твердом состоянии (рис. 18, а) ограничена снизу шлаковой воронкой 3, стенки которой защищены экранными трубами. Эта воронка получила название «холодной». Капли шлака, выпадающие из факела, попадая в эту воронку, вследствие относительно низкой температуры среды в ней затвердевают, гранулируясь в отдельные зерна. Из холодной воронки гранулы шлака через горловину 4 попадают в шлакоприемное устройство 5, из которого они специальным механизмом удаляются в систему шлакозолоудаления.
Камера 1 топки с жидким шлакоудалением (рис. 18, б) ограничена снизу горизонтальным или слегка наклонным подом 3, вблизи которого в результате тепловой изоляции нижней части топочных экранов поддерживают температуру, превышающую температуру плавления золы. В результате этого шлак, выпавший из факела на этот под, остается в расплавленном состоянии и вытекает из топки через летку 4 в шлакоприемную ванну 5, наполненную водой, где, затвердевая, растрескивается на мелкие стекловидные частицы.
Топки с жидким шлакоудалением разделяют на одно- (рис. 18, б) и двухкамерные для крупных котлов (рис. 18, г). В последних топочная камера разделена на две камеры:
1 - камеру горения, в которой происходит горение топлива;
2 - камеру охлаждения, в которой продукты сгорания охлаждают.
Экраны камеры горения покрывают тепловой изоляцией, чтобы максимально повысить температуру горения с целью более надежного получения жидкого шлака, а экраны камеры охлаждения - открытыми, чтобы они могли больше снизить температуру продуктов сгорания.
Факельные топки для жидкого и газообразного топлива (рис. 18, в) выполняют с горизонтальным или слегка наклонным подом.
В очень крупных котельных агрегатах наряду с топочными камерами призматической формы делают так называемые полуоткрытые камеры, которые имеют особый пережим, разделяющий топку на две зоны: горения и охлаждения. Полуоткрытые камеры выполняют для сжигания пылевидного (рис. 18, г), жидкого и газообразного топлива.
Факельные топки можно также классифицировать по типу горелок, которые бывают прямоточными и завихривающими, и по расположению горелок в топочной камере. Горелки размещают на передней и боковых стенах ее и по углам топочной камеры (рис. 18). В крупных котельных агрегатах возможно применять также встречное размещение горелок на передней и задней стенах топки (рис. 18, г).
В вихревых (циклонных) топках можно сжигать твердое топливо и с высоким содержанием летучих, измельченное до пылевидного состояния или до размеров зерна 4-6 мм, а также (пока редко) мазут.
Принцип работы циклонной топки заключается в том, что в почти горизонтальном (рис. 19, а) или в вертикальном цилиндрическом предтопке 1 небольшого диаметра (рис. 19, б) создается газовоздушный вихрь, в котором частицы горящего топлива многократно обращаются до тех пор, пока они не сгорают почти полностью во взвешенном состоянии.
Рис. 19.
Схемы циклонных топок: а
–
топка с горизонтальными циклонными
предтопками; б
– топка с вертикальными циклонными
предтопками.
Продукты сгорания из предтопков при сжигании твердого топлива поступают в камеру дожигания 2, а из нее - в камеру охлаждения 3 и далее в газоходы котельного агрегата. Шлак из предтопков удаляется в жидком виде через летки 5, причем для увеличения количества уловленного шлака между камерой дожигания и камерой охлаждения или между циклонными предтопками и камерой дожигания устанавливают шлакоулавливающий пучок труб 4. При сжигании мазута, а иногда и измельченного твердого топлива камеры дожигания не делают и продукты сгорания выводят непосредственно из предтопков в камеру охлаждения. Циклонные топки применяют в котельных агрегатах относительно высокой паропроизводительности.
Кроме перечисленных выше трех основных способов сжигания топлива, существуют еще некоторые промежуточные способы.
