Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
движки / Otvety_1-28.docx
Скачиваний:
56
Добавлен:
28.05.2020
Размер:
2.01 Mб
Скачать

1. Непосредственный впрыск в дизельных двигателях

Непосредственный впрыск у дизеля – это когда топливо впрыскивается над поршнем ( см. работа порш­ня ), а цилиндр выполняет роль камеры сгорания так же как и в инжекторных бензиновых системах. Раньше та­кая технология использовалась только в двигателях ог­ром­но­го объема с низкими оборотами. И не получала широкого распространения.

Сейчас удалось достичь прогресса благодаря электронно-управляемым топливным насосам высокого давления, оптимизации топливной смеси и ряду других новшеств. Мотор с такой системой подачи топлива мо­жет спокойно работать на оборотах до 4500, при этом гораздо улучшились показатели экономичности, шума и вибраций. Правда, стоимость обслуживания также возросла.

2. Раздельная камера сгорания в дизельных двигателях

Тип дизельных двигателей с раз­дель­ной камерой сгорания отличается от непосредственного впрыска наличием дополнительной камеры. Такая камера размещается в головке блока цилиндров и, как правило, является вихревой. Ци­линдр соединен с камерой специальным каналом. Благодаря этому воздух, ко­то­рый подается под давлением, образует вихрь для лучшего воспламенения.

Самовозгорание топлива на­чи­на­ет­ся непосредственно в дополнительной камере и переходит в сам цилиндр. За счет такого порядка давление в цилиндре нарастает постепенно, что позволяет увеличить максимальные обороты. Уровень шума двигателя с такой системой гораздо ниже.

Подавляющее большинство внедорожников и легковых автомобилей оснащается дизельными моторами с раздельной камерой сгорания.

Устройство топливной системы дизельного двигателя

Устройство топливной системы ди­зель­но­го двигателя является его основой. Топливная система состоит из топливного насоса высокого давления, дизельного топливного фильтра и форсунок дизельного двигателя. От состояния этих элементов будет зависеть правильная подача топлива и надежность работы мотора в целом.

Главная задача – это подать нужное ко­ли­чест­во топлива с нужным давлением и в нужный момент времени. Все этапы происходят на большой скорости и под высоким давлением. Чтобы обеспечить достаточную надежность необходимо использование высокоточных и сложных механизмов. Все это складывается в довольно дорогую систему со сложной настройкой. Давайте рассмотрим каждый элемент устройства топливной системы дизельного двигателя отдельно.

Топливный насос высокого давления (ТНВД)

Топливный насос высокого давления - основной дорогой и сложный элемент. Его главная функция – управление подачей топлива с помощью определенных программ. В зависимости от того, как сильно вы давите на педаль газа, насос подает строго необходимое количество топлива форсункам. При этом учитывается температура двигателя, положение дросселя, количество воздуха, давления тур­бо­над­ду­ва и множества других факторов.

Существуют ТНВД нескольких типов, но самый распространенный – это рас­пре­де­ли­тель­ный тип. Его устанавливают практически на все современные легковые и внедорожные авто.

Насосы такого типа заслужили популярность благодаря своей компактности и точности работы. Топливо распределяется по цилиндрам очень равномерно. К тому же за счет скоростных регуляторов топливный насос высокого давления отлично справляется со своей работой на высоких оборотах.

У ТНВД такого типа есть одно слабое место – требовательность к качеству солярки. Все внутренние части насоса смазываются топливом, а некоторые элементы имеют миниатюрные зазоры. Поэтому плохо очищенная солярка низкого качества может очень быстро вывести из строя эту дорогостоящую составляющую топливной системы.

Форсунки дизельного двигателя

Для эффективной работы всей системы критично важным является состояние форсунок дизельного двигателя. Это высокоточный эле­мент, который подвергается огромным наг­руз­кам. Сама форсунка состоит из корпуса и распылителя. Рабочее давление во всей топ­лив­ной системе определяется регулировкой дав­ле­ния открытия иглы распылителя форсунки. Распылители бывают двух типов – штифтовые и дырчатые. От правильной работы распылителей зависит расход топлива, мощность двигателя и экологические показатели выхлопа.

Игла распылителя двигается строго каждый второй оборот двигателя и не­пос­редст­вен­но попадает в камеру сгорания. Поэтому материалы для изготовления используют очень прочные и устойчивые к высоким температурам. Это не могло не сказаться на стоимости – форсунки дизельного двигателя довольно дорогие.

Дизельный топливный фильтр

Дизельный топливный фильтр самый простой элемент системы, но выполняет очень важную роль. Современные ТНВД, как писали выше, очень чувствительны к качеству топлива. Поэтому фильтр должен предотвратить за­со­ре­ние и не только. Дизельные топливные фильтры задерживают не только мусор, но и воду. Вода отделяется от солярки и направляется в спе­ци­аль­ный отстойник, который необходимо время от времени сливать.

Фильтры подбираются строго под оп­ре­де­лен­ную марку двигателя. Они могут отличаться пропускной способностью, степенью фильтрации, чувствительностью к обнаружению воды и другими специфическими па­ра­мет­ра­ми.

В случае проведения сервисных работ может понадобиться удалить остатки воздуха из топливной системы. Для этого предусмотрен насос ( см. топливный насос двигателя ) с ручной подкачкой, который размещают вверху на корпусе фильтра.

Для условий сурового климата некоторые модели комплектуют электроподогревом фильтра. Такая опция поможет завести машину в мороз, а также устранит кристаллизацию дизельного топлива.

Запуск дизельного двигателя

Для запуска дизельного двигателя необходимы свечи накаливания. Это элементы, которые установлены в камере сгорания. Они активируются при включении зажигания и нагреваются до 900°С за пару секунд. Такой температуры достаточно для са­мо­вос­пла­ме­не­ния топлива.

Существует индикатор готовности к запуску дизельного двигателя на панели при­бо­ров. Пробовать заводить автомобиль следует только, когда погаснет контрольная лампа.

Для обеспечения стабильной работы непрогретого мотора свечи продолжают свою работу еще 20-30 секунд, после чего автоматически отключаются. Предпусковой подогрев последних поколений способен обеспечить запуск дизельного двигателя при морозах до -30°С.

Дизельный двигатель с турбонаддувом

В дизельных двигателях с турбонаддувом турбина позволяет увеличить мощность и элас­тич­ность. Это становится возможным за счет дополнительного нагнетания воздуха в камеру сгорания.

Бывают механические нагнетатели, ко­то­рые приводятся в действие с помощью ремня. Но более распространены турбокомпрессоры, которые работают за счет давления от­ра­бо­тан­ных газов. У дизеля давление выпускной сис­те­мы в два раза выше, чем у бензиновых моторов. Это позволяет работать турбине с минимальными оборотами и избежать эффекта «турбоямы».

За большую мощность дизельного двигателя с турбонаддувом придется платить более качественным моторным маслом (компрессор очень чувствителен к этому па­ра­мет­ру). Также турбина работает под высокой нагрузкой, поэтому ее ресурс редко превышает 150000 км.

17. Система турбонаддува авиационного поршневого двигателя

Турбонаддув - вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов. Турбонаддув применяется как на бензиновых и дизельных двигателях. Наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения мотора. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов и соответствующий нагрев турбонагнетателя.

Отличительной особенностью двигателя с турбонаддувом является наличие: турбокомпрессора, интеркулера, регулятора давления наддува, предохранительного клапана и других элементов. Турбокомпрессор - является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе. Подробнее в статье: "что такое авто турбокомпрессор?". Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа. Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан. Клапан ограничивает энергию отработавших газов, направляя часть в обход турбинного колеса, обеспечивая оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува. Также устанавливается предохранительный клапан. Он защищает от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана или перепускаться на вход компрессора с помощью байпас-клапана.

ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ С ТУРБОНАДДУВОМ

Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя. Турбонаддув не имеет жесткой связи с коленчатым валом двигателя и эффективность работы системы зависит от числа оборотов двигателя. Чем выше обороты мотора, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя. Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях. Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая. При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора - triple-turbo и даже четыре турбокомпрессора - quad-turbo. Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается.

18. Назначение и состав маслосистемы поршневого ДВС.

Система смазки двигателя. Назначение, принцип работы, эксплуатация

Каждый двигатель нуждается в смазке, поэтому моторное масло — один из основных расходных материалов, который всегда есть в запасе у автомобилиста. О том, зачем нужно смазывать мотор, как устроена и как работает система смазки современного двигателя, а также об ее обслуживании и основных неисправностях — читайте в этой статье.

Назначение системы смазки двигателя

Любой двигатель внутреннего сгорания состоит из сотен деталей, большинство из которых (главным образом — детали КШМ и ГРМ) находится в постоянном движении друг относительно друга, а поэтому подвержены трению и износу. Силы трения приводят к бесполезной затрате мощности двигателя, а в ряде случаев делают работу двигателя и вовсе невозможной — при трении детали нагреваются и расширяются, зазоры между ними уменьшаются и заполняются продуктами износа (мелкой стружкой и металлическими частицами микронных размеров), и в результате происходит заклинивание.

Решает эти проблемы система смазки двигателя. Главное, что выполняет система смазки — заменяет «сухое» трение на «мокрое», в результате трение между трущимися деталями снижается на порядок, и двигатель может нормально работать.

Современная система смазки двигателя выполняет несколько функций:

- Снижение сил трения между деталями; - Охлаждение деталей; - Удаление из зазоров продуктов износа деталей и частиц нагара; - Защита поверхностей деталей от коррозии; - Функции управления (масло используется в качестве рабочей жидкости в системе регулирования фаз газораспределения, в гидрокомпенсаторах тепловых зазоров клапанов, гидронатяжителях привода ГРМ и т.д.).

Функции охлаждения и удаления продуктов износа обеспечиваются тем, что масло в современных двигателях циркулирует, находится в постоянном движении, при этом очищается и охлаждается. Антикоррозийные свойства обеспечиваются масляной пленкой, которая постоянно покрывает детали, а также разнообразными присадками, которые содержатся в моторных маслах.

Устройство, принцип работы системы смазки

Система смазки двигателя содержит несколько основных компонентов:

- Масляный поддон картера; - Масляный насос; - Масляный фильтр; - Масляный радиатор (не во всех моторах); - Датчики давления и температуры масла; - Редукционные (перепускные) клапаны; - Масляная магистраль и масляные каналы.

Принцип работы смазочной системы выстроен таким образом, чтобы обеспечить подачу масла ко всем трущимся деталям на всех режимах работы двигателя. Масло хранится в поддоне картера, откуда при запуске двигателя насосом нагнетается в масляный фильтр, а от него под давлением через главную магистраль и каналы в блоке цилиндров поступает к наиболее трущимся и нагруженным деталям — коренным и шатунным подшипникам коленчатого вала, опорным подшипникам и кулачкам распределительного вала ГРМ.

Из переднего коренного подшипника коленвала масло поступает на привод ГРМ и в головку блока цилиндров, где образует масляную ванну — так осуществляется смазка коромысел, толкателей, клапанов и других деталей. Из ГБЦ масло по сливным каналам стекает в поддон картера.

Одновременно масло поступает в каналы в шатунах, и через специальные отверстия или форсунки разбрызгивается на стенки цилиндров и внутренние поверхности поршней — так обеспечивается снижение трения поршневых колец о стенки цилиндра, а также охлаждение поршней и цилиндров. Во многих двигателях такой схемы смазки не предусмотрено — в них смазка поршневых пальцев и цилиндров осуществляется масляным туманом.

По стенкам цилиндров масло стекает в картер, капли масла разбиваются движущимися деталями КШМ — так в картере образуется масляный туман. Вклад в образование тумана делает и масло, выдавливаемое из-под шатунных подшипников. Масляный туман обеспечивает смазку шатунных пальцев, цилиндров, внутренних поверхностей поршней и других деталей.

В двигателях с турбонаддувом предусмотрена возможность подачи масла к валу турбокомпрессора, которая имея большую скорость вращения, без смазки быстро выйдет из строя.

1. Патрубок маслоналивной 2. Насос топливный 3. Трубка маслоподводящая 4. Трубка маслоотводящая 5. Фильтр центробежной очистки масла 6. Фильтр масляный 7. Указатель давления масла 8. Клапан перепускной масляного фильтра 9. Кран радиатора

10. Радиаторы 11. Клапан дефференциальный 12. Клапан предохранительный радиаторной секции 13. Картер масляный 14. Труба всасывающая с заборником 15. Секция радиаторная масляного насоса 16. Секция нагнетающая масляного насоса 17. Клапан редукционный нагнетающей секции 18. Полость дополнительной центробежной очистки масла

Рекомендации по эксплуатации и обслуживанию системы смазки

Система смазки обеспечивает нормальную работу двигателя только тогда, когда она грамотно эксплуатируется и обслуживается. Ничего сложного здесь нет.

Главное, о чем всегда необходимо заботиться — правильный режим запуска двигателя, особенно в холодное время года. При простое двигателя масло стекает в поддон, и детали оказываются без смазки, поэтому в первые мгновения после пуска они испытывают серьезные нагрузки, а на нормальный режим работы двигатель выходит только после образования масляной пленки на всех трущихся поверхностях.

Ситуация усугубляется зимой, когда масло в картере густеет и после пуска с большим трудом подается к трущимся деталям. Поэтому зимой, особенно при температурах ниже −20°C, необходимо завести и прогреть двигатель, пока температура масла в нем не поднимется до установленной отметки (80–90°C). О методиках зимнего пуска двигателя сказано уже очень много, поэтому здесь мы этого вопроса касаться не будем.

Большое внимание необходимо уделять техническому обслуживанию системы смазки. В частности, каждые 10-20 тысяч км пробега (в среднем — 15 тысяч) необходимо производить замену моторного масла и масляного фильтра. Для новых двигателей эта операция производится чаще. Но нужно отметить, что каждый производитель автомобилей и двигателей дает свои рекомендации по обслуживанию, которым необходимо четко следовать.

19. Типы воздушных винтов.

По способу крепления лопастей к втулке различают винты неизменяемого, фиксированного шага (ВФШ), лопасти которых выполнены заодно со втулкой, и винты изменяемого шага (ВИШ) – наиболее распространённый тип, лопасти которого в полёте можно поворачивать во втулке вокруг оси на некоторый угол, называемый углом установки лопасти.

В зависимости от величины потребляемой мощности применяются двух-, трёх- и 4-лопастные винты, а также соосные винты, когда два винта расположены один за другим, при этом вал переднего винта проходит через полый вал заднего винта и вращаются они в противоположные стороны.

Винты могут быть как тянущими – устанавливаются на самолёте впереди двигателя, так и толкающими – помещаются позади двигателя.

Разновидностями воздушных винтов являются несущий винт и рулевой винт, применяемые на вертолётах, винтокрылах, автожирах.

По направлению вращения: винты левого вращения и правого. ( смотрим из кабины).

Для сохранения достаточно высокого КПД винта на всех режимах эксплуатации самолета и двигателя используются винты изменяемого в полёте шага (ВИШ). По механизму изменения шага различают винты с механическим, электрическим или гидравлическим приводом; по схеме работы — винты прямой или обратной схемы.

В последнее время находят применение многолопастные воздушные винты нового поколения уменьшенного диаметра с широкими тонкими саблевидными лопастями (так называемые винтовентиляторы), ведется работа над сверхзвуковыми винтами, применяются указанные выше импеллеры. Кроме того уже достаточно давно применяются соосные винты, когда на одной оси вращаются два воздушных винта в различных направлениях.

20. Механизм поворота лопастей воздушного винта.

По принципу устройства механизма изменения шага воздушные винты можно разделить на два основных типа: электромеханические, у которых поворот лопастей производится электромотором, и гидравлические, у которых механизмы поворота лопастей приводятся в движение давлением масла. Все современные отечественные ВИШ имеют гидравлическое управление лопастей. Они отличаются простотой устройства и надежностью работы.

Кроме усилий, создаваемых механизмом управления винтом, для поворота лопастей используются также развиваемые лопастями центробежные силы, аэродинамические силы, а на некоторых винтах – и центробежные силы специальных грузов (противовесов), прикрепляемых к комлям лопастей.

Собственные центробежные силы лопастей стремятся повернуть лопасти в сторону уменьшения угла установки (уменьшение шага). Аэродинамические силы, действующие на лопасти, и центробежные силы противовесов стремятся повернуть лопасти в сторону увеличения угла установки (увеличения шага).

При изменении мощности двигателя, скорости и высоты полета должен соответствующим образом изменяться и шаг винта. С этой целью на всех самолетах с ВИШ предусматривается автоматическое управление винтом в полете, которое осуществляется специальными регуляторами оборотов. Совместно с регулятором оборотов винт работает как автомат, сохраняя постоянными заданные пилотом обороты и изменяя положение лопастей в зависимости от изменения мощности двигателя и условий полета. Такие винты называются винтами-автоматами, а регуляторы – регуляторами постоянных оборотов (РПО). Винт-автомат позволяет эксплуатировать двигатель на оборотах, выгодных с точки зрения уменьшения расхода топлива и износа деталей двигателя.

Винты автоматы с гидравлическим управлением работают совместно с РПО центробежного типа. Схема работы такого регулятора зависит от схемы работы винта. Основными схемами работы винтов с гидравлическим управлением являются прямая, обратная и двусторонняя схемы.

У винтов, работающих по прямой схеме, на лопасти надеты противовесы. Лопасти поворачиваются в сторону уменьшения шага силой давления масла, поступающего из РПО в механизм винта, и центробежными силами лопастей. На увеличение шага лопасти переводятся силами противовесов и аэродинамическими силами (рис.7).

Рис. 7. Работа втулки ВИШ прямой схемы.

а — под давлением поступающего масла подвижный цилиндр двигается вправо и поворачивает лопасть на малый шаг.

б — противовес под действием центробежной силы поворачивает лопасть на большой шаг, цилиндр двигается влево и выжимает масло из своей полости.

У винтов, работающих по обратной схеме, лопасти на уменьшение шага поворачиваются собственными центробежными силами, а на увеличение шага – силами давления масла на поршень механизма винта и аэродинамическими силами (рис. 8).

Рис. 8. Работа втулки ВИШ обратной схемы

а — масло поступает в полость цилиндра А и давит на подвижный поршень, который двигается влево и поворачивает лопасть на большой шаг. б — центробежные силы поворачивают лопасть на малый шаг, поршень двигается вправо и выжимает масло из полости А.

У винтов, работающих по двусторонней схеме, лопасти на уменьшение шага переводятся силами давления масла и центробежными силами, а на увеличение шага – силами давления масла и аэродинамическими силами.

21. Механизм флюгирования воздушного винта.

Специальный режим работы воздушного винта - флюгерный, который используется при выключении (чаще аварийном) двигателя в полете. Тогда лопасти выставляются «по потоку», чтобы не создавать лишнего сопротивления полету. Вывод лопастей во флюгерное положение обычно производится гидроприводом, двигатель (цилиндр) которого находится непосредственно в винте, а насос установлен вне винтомоторной группы и автономен, так как его работа требуется уже после отказа двигателя. Например, на поршневом самолёте Ил-14, на котором стоят две винтомоторные группы, каждая из которых состоит из двигателя АШ-82Т и винта АВ-50, рабочие положения лопастей — 22-46° относительно плоскости вращения, флюгерное — 94°, жидкость (моторное масло) для управления винтом при флюгировании подаёт специальный флюгер-насос «431» с двигателем постоянного тока 27 В — по одному на ВМГ.

На Ил-14 управление флюгированием-расфлюгированием ручное, но на многих самолётах при отказе двигателя в полёте флюгирование происходит автоматически, например, на Ил-18 или Ан-12 (четыре двигателя АИ-20) — по сигналу установленного в редукторе измерителя крутящего момента ИКМ, при отказе двигателя его крутящий момент резко падает вплоть до отрицательного.

22. Привод постоянных оборотов воздушного винта.

Регулятор оборотов автоматически поддерживает постоянные обороты двигателя, заданные пилотом, путем поворота лопастей винта в сторону увеличения или уменьшения шага. Работа регулятора оборотов основана на гидроцентробежном принципе. Основными элементами регулятора оборотов являются центробежный узел, механизм управления и силовая часть регулятора.

Центробежный узел является чувствительным элементом. Он обеспечивает управление подводом масла в полость малого шага винта и слив масла из цилиндра винта при повороте лопастей на большой шаг. В него входят два Г-образных грузика, золотник и пружина. Перемещение золотника вверх осуществляется центробежными силами Г-образных грузиков, величина которых зависит от числа оборотов коленвала двигателя. Пружина перемещает золотник вниз во всех случаях, когда сила ее упругости больше центробежных сил Г-образных грузиков (рис.9).

Рис. 9. Работа центробежного регулятора (ВИШ прямой схемы).

При работе на равновесных оборотах, когда мощность двигателя, скорость полета и высота не меняются, центробежные силы Г-образных грузиков (1) уравновешивают силу упругости пружины (3) и удерживают золотник (4) в нейтральном положении. При этом масло, находящееся в полости цилиндра винта, оказывается запертым, являясь для поршня винта гидравлическим упором. Это удерживает лопасти от поворота, сохраняя шаг винта и постоянные обороты коленчатого вала двигателя (рис. 9-А).

Если в полете увеличиваются обороты коленчатого вала двигателя в результате повышения наддува или увеличения скорости полета, растут и центробежные силы Г-образных грузиков (1), которые, преодолевая силу сжатия пружины (3), перемещают золотник (4) вверх, открывая канал (5) слива масла из цилиндра винта в картер двигателя. Лопасти винта под действием аэродинамических сил и центробежных сил противовесов поворачиваются в сторону увеличения шага, повышая нагрузку на двигатель. При этом уменьшаются обороты коленчатого вала двигателя, снижаются центробежные силы Г-образных грузиков. Пружина перемещает золотник в нейтральное положение при оборотах, равных заданным, при которых центробежные силы грузиков уравновешиваются силой упругости пружины (рис.9-Б).

Если в полете обороты коленчатого вала двигателя уменьшаются в результате снижения давления наддува или скорости полета, уменьшаются и центробежные силы Г-образных грузиков (1), и пружина (3) перемещает золотник (4) вниз, открывая канал (5) подвода масла в цилиндр винта для перемещения поршня назад и поворота лопастей в сторону уменьшения шага. При этом увеличиваются обороты коленчатого вала двигателя, растут центробежные силы Г-образных грузиков, которые, преодолевая упругость сжатой пружины, перемещают золотник в нейтральное положение при оборотах, равных заданным, обеспечивая восстановление равновесия между силой упругости сжатой пружины и центробежными силами вращающихся грузиков (рис. 9-В).

23. Внешняя характеристика авиационного поршневого ДВС.

Внешней характеристикой называется зависимость эффективной мощности и удельного расхода топлива от числа оборотов при максимальном давлении наддува или при полном открытии дроссельной заслонки.

При работе двигателя по внешней характеристике состав смеси на всех оборотах остается постоянным, соответствующим максимальному значению мощности. Следовательно, внешней характеристикой определяются наиболь- шие мощности, которые может развить двигатель при данных оборотах коленчатого вала. С увеличением числа оборотов эффективная мощность двигателя сначала возрастает, при некоторых оборотах достигает максимального значения, а затем начинает падать, так как с увеличением оборотов рост мощности трения (Nтр = A.n2) опережает рост индикаторной мощности. Удельный расход топлива се с увеличением числа оборотов непрерывно увеличивается в связи с уменьшением механического КПД (се = сim), индикаторный же расход топлива сi остается постоянным.

Рис. 7. Внешняя характеристика двигателя

Neэффективная мощность, л.с.; Сh внчасовой расход топлива, кг/ч; Сe вн, кг/л.с.ч. - удельный расход топлива

Снятие внешней характеристики производится на испытательном стенде. Изменение числа оборотов производится при этом облегчением или затяжелением винта, т.е. уменьшением или увеличением угла φ или специальным воздушным (или гидравлическим) тормозом.

24. Винтовая характеристика авиационного поршневого ДВС.

Винтовой (дроссельной) характеристикой двигателя называется зависимость эффективной мощности и удельного эффективного расхода топлива от оборотов при нагрузке двигателя подобранным винтом фиксированного шага.

Мощность, необходимая для вращения винта, зависит от его размеров, угла φ установки лопастей и числа оборотов и выражается формулой:

Nв = A.nв3 , (19)

где А – коэффициент, зависящий от диаметра винта и угла установки его лопастей.

Если на двигателе установить винт фиксированного шага, то мощность, необходимая для вращения ВФШ, будет изменяться пропорционально кубу числа оборотов и будет соответствовать сплошной кривой, изображенной на рис.8. Эта кривая представляет собой кубическую параболу, т.е. мощность двигателя очень сильно изменяется при изменении числа оборотов (при уменьшении числа оборотов вдвое мощность двигателя изменяется в 8 раз).

На том же рисунке пунктиром показана внешняя характеристика двигателя. Обе эти кривые пересекаются в определенной точке (А), в которой мощность, потребляемая винтом, становится равной мощности, развиваемой двигателем при его работе по внешней характеристике. При одних и тех же оборотах мощность двигателя по винтовой характеристике меньше мощности по внешней характеристике вследствие различной степени открытия дроссельной заслонки.

Рис. 8. Винтовая характеристика двигателя.

Удельный расход топлива по дроссельной характеристике с увеличением оборотов уменьшается и при некотором значении числа оборотов достигает минимальной величины, затем вновь увеличивается. Такой характер изменения удельного расхода топлива обеспечивается соответствующей регулировкой карбюратора или аппаратуры непосредственного впрыска. Минимальный расход топлива соответствует оборотам крейсерского режима полета, требующим максимальной экономичности для увеличения дальности и продолжительности полета при данном запасе горючего.

В настоящее время распространение имеют винты изменяемого в полете шага (ВИШ). Их преимущество перед винтами фиксированного шага заключается в том, что они позволяют в любых условиях полета подбирать такое сочетание мощности и оборотов, при котором обеспечивается наибольшая экономичность двигателя и высокий КПД воздушного винта. Благодаря этому обеспечивается также наибольшая тяга винта на взлете.

Соседние файлы в папке движки