- •Введение
- •Глава 1. Отходы производства и потребления
- •1.1. Электронная биржа отходов
- •1.2. Источники образования отходов производства и потребления. Классификация отходов
- •Источниками образования отходов являются:
- •1.3. Нормирование образования отходов
- •1.4. Методы определения классов опасности
- •Первичные показатели опасности компонентов отхода
- •6. По найденным относительным параметрам Хi определяем коэффициенты степени опасности Wi для каждого компонента отхода.
- •1.5. Полигоны для размещения опасных и твердых бытовых отходов
- •8. Коды для машинной обработки по видам территорий, на которых расположен объект хранения отходов
- •Глава 2. Утилизация твердых отходов производства
- •2.1. Зола и шлаки тепловых электростанций
- •2.2. Шлаки черной и цветной металлургии
- •2.3. Переработка строительных отходов
- •2.4. Отходы производства резин и амортизированных шин
- •2.5. Отходы производства пластмасс
- •2.6. Отходы торфяной и лесной промышленности
- •Углеродсодержащих отходов (торфа)
- •В процессах переработки биомассы
- •2.7. Зола и шлаки мусоросжигательных заводов
- •Глава 3. Утилизация жидких и пастообразных отходов производства
- •3.1. Кислые гудроны
- •Из кислого гудрона и асфальтов деасфальтизации
- •И битума бнк 45/190
- •По получению строительного и кровельного битума
- •3.2. Отработанные минеральные масла
- •Контактной очистки отработанных масел
- •Селективными растворителями («Ульрих-процесс»):
- •3.3. Нефте- и маслошламы
- •Эмульсионного шлама в топочный мазут:
- •Состав вспучивающей добавки представлен в табл. 3.8.
- •3.4. Отработанные смазочно-охлаждающие жидкости
- •3.5. Отходы растворителей
- •При производстве поливинилового спирта:
- •3.6. Отходы лакокрасочных материалов
- •И регенерированной эмали
- •3.7. Отходы подготовки природных вод
- •3.8. Осадки производственных сточных вод
- •Глава 4. Утилизация газообразных отходов
- •4.1. Пары органических растворителей
- •4.2. Диоксид углерода
- •4.3. Оксиды серы
- •Отходящих газов от оксида серы («реверс-процесс»):
- •От сернистых соединений:
- •Адсорбционные методы основаны на применении в качестве поглотителей активных углей, синтетических и природных цеолитов, оксидов металлов.
- •4.4. Оксиды азота
- •Отходящих производственных газов от оксидов азота:
- •4.5. Сероводород
- •В элементарную серу
- •Глава 5. Утилизация отходов потребления
- •5.1. Характеристика твердых бытовых отходов
- •5.2. Анализ наиболее распространенных и перспективных методов решения проблемы тбо
- •Захоронение тбо. Наибольшее распространение в России получил метод захоронения тбо. Причем этот метод подразделяется на два типа: организованное и неорганизованное.
- •Полигонов
- •5.3. Утилизация некоторых других видов промышленных и бытовых отходов
- •Глава 6. Плата за загрязнение окружающей среды
- •6.1. Расчет платы за выбросы загрязняющих веществ в атмосферу от стационарных источников
- •6.2. Расчет платы за выбросы загрязняющих веществ в атмосферу от передвижных источников
- •Загрязняющих веществ передвижными источниками (для различных видов топлива)
- •6.3. Расчет платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты
- •6.4. Расчет платы за размещение отходов
- •Загрязняющих веществ от стационарных и передвижных источников
- •Веществ в поверхностные и подземные водные объекты
- •(Состояние атмосферного воздуха и почвы), по территориям экономических районов Российской Федерации
- •(Состояние водных объектов), по бассейнам морей и рек
- •Глава 7. Экологическое право
- •Библиографический список
- •Приложение а федеральный классификационный каталог отходов
- •Приложение б Оформление проекта нормативов образования отходов
- •Производимой продукции, расчетно-аналитическим методом
- •Используемого сырья, расчетно-аналитическим методом
- •И промышленных сточных вод и водоподготовки
- •У индивидуального предпринимателя или юридического лица
- •Или обезвреживания отходов
- •На состояние окружающей среды
- •Перечень
- •Учебное издание
- •Соколов Эдуард Михайлович Москвичев Юрий Александрович,
- •150023, Ярославль, Московский пр., 88
- •150000, Ярославль, ул. Советская, 14а
Отходящих газов от оксида серы («реверс-процесс»):
1 – реактор 1-й стадии; 2 – реактор 2-й стадии; 3 – вентили;
4 – котел-утилизатор; 5, 6 – промежуточный и конечный абсорбер;
I – очищенный газ; II – пар
Датская фирма «Халдорф Топсе А/О» предлагает технологию каталитической десульфуризации промышленных и отходящих газов, содержащих окислы серы и сероводород с получением товарной серной кислоты. Эффективность очистки газов в процессе составляет не менее 95 % (рис. 4.6).
Рис. 4.6. Технологическая схема установки для очистки газов
От сернистых соединений:
1 – теплообменник; 2 – рекуператор; 3 – подогреватель; 4 – реактор;
5 – башенный аппарат для выделения серной кислоты (конденсатор-концентратор); 6 – теплообменник
Высокоэффективная очистка газов от сернистых соединений обеспечивается путем каталитической конверсии их в триоксид серы с последующим получением товарной концентрированной серной кислоты. Процесс протекает по следующим стадиям:
• каталитическое окисление сернистых компонентов
2H2S + ЗО2 2Н2О + 2SO2
2SO2 + О2 2SO3
• гидролиз триоксида серы
SО3 + Н2О H2SO4 (г)
• конденсация серной кислоты
H2SO4 (г) H2SO4 (ж)
Очищаемый газ последовательно подогревается в теплообменниках-рекуператорах 1 и 2 и подогревателе 3 до температуры 420 °С и поступает в реактор 4, где осуществляется каталитическое окисление сернистых компонентов газа до триоксида серы. Выходящий из реактора 4 газ охлаждается в рекуператоре 2, и содержащийся в нем триоксид серы гидролизуется в газообразную серную кислоту. Если газ не содержит паров воды, в него добавляется пар, при этом температуру газа поддерживают значительно выше точки росы серной кислоты. Концентрированная серная кислота выделяется в башне 5, которая представляет собой конденсатор-концентратор. Очищаемый газ, содержащий серную кислоту, проходит по трубному пространству и охлаждается атмосферным воздухом или газом, поступающим на очистку, направляемым по межтрубному пространству. Серная кислота собирается на дне башни и через пластинчатый теплообменник-охладитель 6 откачивается в накопительную емкость. Концентрация полученной серной кислоты составляет 93-98 %.
Воздух, нагретый в башне 5, используется для подогрева газа, поступающего на очистку, в рекуператоре 1 и затем направляется на смешение с очищенным газом, отходящим на выброс в трубу.
Известен пиролюзитный метод окисления диоксида серы кислородом в жидкой фазе в присутствии катализатора на основе оксида марганца (пиролюзит). При этом Мn2+ окисляется до Мn3+ при наличии кислорода и одновременно окисляется SO2
4Мn2+ + ЗО2 2Мn2О3
2SO2 + О2 2SO3
Мn3+ окисляет диоксид серы, переходя снова в Мn2+
Мn2О3 + SO2 S3 + 2MnO
Жидкостно контактный метод основан на окислении диоксида серы в жидкой фазе на поверхности катализатора, например, активного угля.
Адсорбционные методы основаны на применении в качестве поглотителей активных углей, синтетических и природных цеолитов, оксидов металлов.
Использование активных углей позволяет получать серную кислоту, но концентрацией 20 %.
Применение цеолитов и оксидов металлов дает возможность проводить адсорбцию при высоких температурах и получать при оптимальных условиях регенерации сорбентов газы с концентрацией диоксида серы до 25 %, которые можно переработать в серную кислоту.
Недостаток адсорбционных методов - необходимость регенерации адсорбентов, их механическое разрушение.
