Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Соколов Э.М., Москвичев Ю.А. и др. Утилизация отходов производства и потребления.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
9.68 Mб
Скачать

4.2. Диоксид углерода

Диоксид углерода наряду с кислородом является одним из основных веществ, участвующих практически во всех самых важных биологических, биосферных, технологических процессах. В настоящее время о диоксиде углерода во всем мире говорят в большей степени в связи с проблемой изменения климата из-за накопления в атмосфере парниковых газов. Наибольший вклад в России в общий объем парниковых газов вносят металлургическая (выплавка чугуна и стали) и химическая (производство аммиака и метанола) промышленности, а также предприятия топливно-энергетического комплекса (получение электроэнергии и пара на тепловых электростанциях).

Методы очистки газов от диоксида углерода можно разделить на следующие группы:

  • Абсорбционные, основанные на достаточно большой раство-римости СО2 в полярных растворителях (вода, метанол);

  • Хемосорбционные, основанные на химическом связывании СО2 при взаимодействии его с соединениями щелочного характера (щелочь, этаноламин, растворы карбонатов).

  • Адсорбционные, основанные на адсорбции СО2 различными адсорбентами (например, цеолитами).

Для очистки технологических и дымовых газов от СО2 в промышленности используются в основном циклические абсорбционные процессы. Агрегат очистки большой единичной мощности мог быть создан лишь с использованием в качестве поглотителя эффективных хемосорбционных растворов, которые обладали бы большой ёмкостью и высокой скоростью поглощения СО2. В России наиболее широко распространён метод очистки синтезгаза от СО2 водными растворами моноэтаноламина (МЭА), что объясняется сравнительно невысокой стоимостью МЭА, а также рядом уникальных свойств такой очистки, среди которых главными являются высокая скорость процесса абсорбции СО2 и практически равное нулю равновесное давление СО2 над низко карбонизированными растворами. Этот метод нашел применение на заводах, производящих аммиак и метанол, на предприятиях нефтехимической, металлургической и пищевой промышленности, где приходится очищать от СО2 и H2S большие количества природного, коксового, колошникового и дымового газов.

Было установлено, что в процессе абсорбции протекают следующие три реакции:

2RNH2 +CO2  RNH3RNHCOO ,

RNH2+ СО2  RNHCOO+ Н +,

RNHCOORNH3 + 2H2O + CO2  2RNH3HCO3.

Для реализации процесса в промышленности были предложены в качестве контактного устройства ситчатые барботажные тарелки с переменным уровнем жидкости на ступени контакта фаз.

Десорбция СО2 в пар протекает в тарельчатом регенераторе при кипении раствора и её скорость определяется скоростью подвода тепла к жидкой фазе.

П ринципиальная технологическая схема очистки газов от СО2 представлена на рис. 4.4.

Рис. 4.4. Схема очистки газа от диоксида углерода:

1 – абсорбер с высокослойными тарелками; 2 ­– холодильники;

3 – регенератор с теплообменниками; 4 – конденсатор для грязного СО2;

5 – конденсатор для чистого СО2; 6 – кипятильник

4.3. Оксиды серы

До последнего времени для улавливания диоксида серы применяли единственный метод - сооружение высоких дымовых труб. Такой способ позволяет снизить концентрацию диоксида серы в приземном слое на территории предприятий. Кроме того, вследствие окисления диоксида серы до триоксида с последующим растворением в воде и взаимодействия с аммиаком, находящимся а атмосфере, происходит самоочищение атмосферы от диоксида серы. Продолжительность его существования в атмосфере от 5 до 120 часов.

Однако из-за высокой подвижности атмосферы вредные вещества могут переноситься на значительные расстояния, выпадать с осадками на почву (кислые осадки, закисление почвы и водоемов), вызывать смог.

Поэтому в настоящее время применяются различные методы очистки от ходящих газов от диоксида серы: методы нейтрализации диоксида серы, каталитические методы окисления, адсорбционные методы с выделением диоксида серы из газового потока с последующей утилизацией.

Методы нейтрализации диоксида серы. Эти методы основаны на поглощении SO2 из газов растворами или суспензиями различных реагентов.

Известковый метод заключается во взаимодействии диоксида серы с известняком или известью.

СаСО3 + SO2  CaSO3 + CO2

СаО + SO2  CaSO3

2CaSO3 +O2  2CaSO4

Преимущества метода - небольшие капитальные затраты, возможность использования технологического оборудования из некислотоупорных материалов, простота и надежность оборудования; образующийся шлам (влажный гипс) после соответствующей подготовки может использоваться в строительной промышленности. Степень очистки газа этим методом достигает 98 %.

Содовый метод по химизму близок к известковому; основан на поглощении диоксида серы раствором соды с образованием бисульфита и сульфита натрия, которые после выделения из водного раствора могут использоваться как отдельные реагенты.

Аммиачные методы основаны на взаимодействии диоксида серы с водными растворами сульфита аммония.

SO2 + (NH4)2SO3 +H2O 2NH4HSO3

В зависимости от способа разложения бисульфита аммония различают несколько вариантов этого метода.

Аммиачно-сернокислый метод заключается в обработке бисульфита аммония серной кислотой.

2NH4HSO3 + H2SO4 2(NH4)2SO4 + 2Н2О + SO2

Половину выделившегося диоксида серы направляют для производства серной кислоты, используемой непосредственно в процессе, а вторая половина может быть использована как товарный продукт: диоксид серы или серная кислота.

В аммиачно-автоклавном методе адсорбцию диоксида серы про-водят раствором сульфит-бисульфита аммония. Отработанный раствор в этом случае разлагают в автоклаве при температуре 150-160 °С и давлении 0,5-0,6 МПа с получением элементарной серы и сульфата аммония. При этом протекает реакция

2NH4HSO3 + (NH4)2SO3  2(NH4)2SO4 + S + Н2О

Сульфат аммония и сера являются товарными продуктами и реагентами.

Аммиачно-циклический метод заключается в поглощении диоксида серы растворами сульфит-бисульфита аммония при низкой температуре и выделении его при нагревании. Степень очистки дымового газа составляет от 90 до 95 % при содержании в нем диоксида серы 0,4 %.

Магнезитовый метод основан на поглощении диоксида серы суспензией оксида магния:

MgO + SO2 + 6 Н2О  MgSO3 + 6Н2О

или MgO + SO2 + ЗН2О  MgSO33H2O

Образовавшиеся кристаллы сульфида магния отделяют от воды центрифугированием и обжигают во вращающихся печах с получением диоксида серы и оксида магния. Оксид магния возвращают в процесс, а диоксид серы направляют на переработку в серную кислоту.

Для предотвращения образования сульфата магния

2MgSO3 + О2  2MgSO4

в суспензию добавляют ингибитор - парафенилендиамин.

Степень очистки отходящих газов изменяется от 87 до 98 % при повышении рН среды с 5 до 7,7. Остаточное содержание диоксида серы в газах, очищенных по магнезитовому методу, составляет 0,03-0,06 %.

Цинковый метод основан на поглощении диоксида серы суспензией оксида цинка.

ZnO + SO2 + 2,5H2O  ZnSO32,5H2O

ZnO + 2SO2 +H2O  Zn(HSO3)2

Кристаллы сульфита цинка отделяют фильтрованием или центрифугированием и разлагают при температуре 300-350 °С на воду, диоксид серы и оксид цинка. Оксид цинка возвращают в производство, диоксид серы используется как товарный продукт.

Каталитические методы окисления диоксида серы. В настоящее время в нашей стране внедрен на многих предприятиях «реверс-процесс» (разработка АО «Реверс-процесс», г. Новосибирск). Этот процесс каталитической очистки промышленных газов осуществляют, изменяя направление фильтрации очищаемого газа в слое катализатора через каждые 5-100 минут на противоположное. На катализаторе происходит превращение токсичных примесей в безвредные. Выделяющееся в ходе процесса тепло служит дня нагрева очищаемого газа, что обеспечивает автотермичность процесса. Периодический реверс газового потока позволяет создать в центре слоя катализатора высокотемпературную зону реакции (300-600 °С), а торцевым слоям инерта отводится роль регенераторов тепла.

Способ применяется для очистки газов от углеводородов, спиртов, растворителей и других органических примесей, оксидов серы и азота с эффективностью 95-98 %.

Процесс «реверс - SO2 в SO3» можно использовать для очистки отходящих газов в производстве серной кислоты, цветных металлов, сжигания серы, обжига колчедана, переработке сероводорода и т.д. Образующийся триоксид серы абсорбируется серной кислотой или олеумом с получением концентрированной серной кислоты (рис. 4.5).

Рис. 4.5. Принципиальная технологическая схема очистки