- •Введение
- •Глава 1. Отходы производства и потребления
- •1.1. Электронная биржа отходов
- •1.2. Источники образования отходов производства и потребления. Классификация отходов
- •Источниками образования отходов являются:
- •1.3. Нормирование образования отходов
- •1.4. Методы определения классов опасности
- •Первичные показатели опасности компонентов отхода
- •6. По найденным относительным параметрам Хi определяем коэффициенты степени опасности Wi для каждого компонента отхода.
- •1.5. Полигоны для размещения опасных и твердых бытовых отходов
- •8. Коды для машинной обработки по видам территорий, на которых расположен объект хранения отходов
- •Глава 2. Утилизация твердых отходов производства
- •2.1. Зола и шлаки тепловых электростанций
- •2.2. Шлаки черной и цветной металлургии
- •2.3. Переработка строительных отходов
- •2.4. Отходы производства резин и амортизированных шин
- •2.5. Отходы производства пластмасс
- •2.6. Отходы торфяной и лесной промышленности
- •Углеродсодержащих отходов (торфа)
- •В процессах переработки биомассы
- •2.7. Зола и шлаки мусоросжигательных заводов
- •Глава 3. Утилизация жидких и пастообразных отходов производства
- •3.1. Кислые гудроны
- •Из кислого гудрона и асфальтов деасфальтизации
- •И битума бнк 45/190
- •По получению строительного и кровельного битума
- •3.2. Отработанные минеральные масла
- •Контактной очистки отработанных масел
- •Селективными растворителями («Ульрих-процесс»):
- •3.3. Нефте- и маслошламы
- •Эмульсионного шлама в топочный мазут:
- •Состав вспучивающей добавки представлен в табл. 3.8.
- •3.4. Отработанные смазочно-охлаждающие жидкости
- •3.5. Отходы растворителей
- •При производстве поливинилового спирта:
- •3.6. Отходы лакокрасочных материалов
- •И регенерированной эмали
- •3.7. Отходы подготовки природных вод
- •3.8. Осадки производственных сточных вод
- •Глава 4. Утилизация газообразных отходов
- •4.1. Пары органических растворителей
- •4.2. Диоксид углерода
- •4.3. Оксиды серы
- •Отходящих газов от оксида серы («реверс-процесс»):
- •От сернистых соединений:
- •Адсорбционные методы основаны на применении в качестве поглотителей активных углей, синтетических и природных цеолитов, оксидов металлов.
- •4.4. Оксиды азота
- •Отходящих производственных газов от оксидов азота:
- •4.5. Сероводород
- •В элементарную серу
- •Глава 5. Утилизация отходов потребления
- •5.1. Характеристика твердых бытовых отходов
- •5.2. Анализ наиболее распространенных и перспективных методов решения проблемы тбо
- •Захоронение тбо. Наибольшее распространение в России получил метод захоронения тбо. Причем этот метод подразделяется на два типа: организованное и неорганизованное.
- •Полигонов
- •5.3. Утилизация некоторых других видов промышленных и бытовых отходов
- •Глава 6. Плата за загрязнение окружающей среды
- •6.1. Расчет платы за выбросы загрязняющих веществ в атмосферу от стационарных источников
- •6.2. Расчет платы за выбросы загрязняющих веществ в атмосферу от передвижных источников
- •Загрязняющих веществ передвижными источниками (для различных видов топлива)
- •6.3. Расчет платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты
- •6.4. Расчет платы за размещение отходов
- •Загрязняющих веществ от стационарных и передвижных источников
- •Веществ в поверхностные и подземные водные объекты
- •(Состояние атмосферного воздуха и почвы), по территориям экономических районов Российской Федерации
- •(Состояние водных объектов), по бассейнам морей и рек
- •Глава 7. Экологическое право
- •Библиографический список
- •Приложение а федеральный классификационный каталог отходов
- •Приложение б Оформление проекта нормативов образования отходов
- •Производимой продукции, расчетно-аналитическим методом
- •Используемого сырья, расчетно-аналитическим методом
- •И промышленных сточных вод и водоподготовки
- •У индивидуального предпринимателя или юридического лица
- •Или обезвреживания отходов
- •На состояние окружающей среды
- •Перечень
- •Учебное издание
- •Соколов Эдуард Михайлович Москвичев Юрий Александрович,
- •150023, Ярославль, Московский пр., 88
- •150000, Ярославль, ул. Советская, 14а
4.2. Диоксид углерода
Диоксид углерода наряду с кислородом является одним из основных веществ, участвующих практически во всех самых важных биологических, биосферных, технологических процессах. В настоящее время о диоксиде углерода во всем мире говорят в большей степени в связи с проблемой изменения климата из-за накопления в атмосфере парниковых газов. Наибольший вклад в России в общий объем парниковых газов вносят металлургическая (выплавка чугуна и стали) и химическая (производство аммиака и метанола) промышленности, а также предприятия топливно-энергетического комплекса (получение электроэнергии и пара на тепловых электростанциях).
Методы очистки газов от диоксида углерода можно разделить на следующие группы:
Абсорбционные, основанные на достаточно большой раство-римости СО2 в полярных растворителях (вода, метанол);
Хемосорбционные, основанные на химическом связывании СО2 при взаимодействии его с соединениями щелочного характера (щелочь, этаноламин, растворы карбонатов).
Адсорбционные, основанные на адсорбции СО2 различными адсорбентами (например, цеолитами).
Для очистки технологических и дымовых газов от СО2 в промышленности используются в основном циклические абсорбционные процессы. Агрегат очистки большой единичной мощности мог быть создан лишь с использованием в качестве поглотителя эффективных хемосорбционных растворов, которые обладали бы большой ёмкостью и высокой скоростью поглощения СО2. В России наиболее широко распространён метод очистки синтезгаза от СО2 водными растворами моноэтаноламина (МЭА), что объясняется сравнительно невысокой стоимостью МЭА, а также рядом уникальных свойств такой очистки, среди которых главными являются высокая скорость процесса абсорбции СО2 и практически равное нулю равновесное давление СО2 над низко карбонизированными растворами. Этот метод нашел применение на заводах, производящих аммиак и метанол, на предприятиях нефтехимической, металлургической и пищевой промышленности, где приходится очищать от СО2 и H2S большие количества природного, коксового, колошникового и дымового газов.
Было установлено, что в процессе абсорбции протекают следующие три реакции:
2RNH2 +CO2 RNH3RNHCOO ,
RNH2+ СО2 RNHCOO – + Н +,
RNHCOORNH3 + 2H2O + CO2 2RNH3HCO3.
Для реализации процесса в промышленности были предложены в качестве контактного устройства ситчатые барботажные тарелки с переменным уровнем жидкости на ступени контакта фаз.
Десорбция СО2 в пар протекает в тарельчатом регенераторе при кипении раствора и её скорость определяется скоростью подвода тепла к жидкой фазе.
П
ринципиальная
технологическая схема очистки газов
от СО2
представлена на рис. 4.4.
Рис. 4.4. Схема очистки газа от диоксида углерода:
1 – абсорбер с высокослойными тарелками; 2 – холодильники;
3 – регенератор с теплообменниками; 4 – конденсатор для грязного СО2;
5 – конденсатор для чистого СО2; 6 – кипятильник
4.3. Оксиды серы
До последнего времени для улавливания диоксида серы применяли единственный метод - сооружение высоких дымовых труб. Такой способ позволяет снизить концентрацию диоксида серы в приземном слое на территории предприятий. Кроме того, вследствие окисления диоксида серы до триоксида с последующим растворением в воде и взаимодействия с аммиаком, находящимся а атмосфере, происходит самоочищение атмосферы от диоксида серы. Продолжительность его существования в атмосфере от 5 до 120 часов.
Однако из-за высокой подвижности атмосферы вредные вещества могут переноситься на значительные расстояния, выпадать с осадками на почву (кислые осадки, закисление почвы и водоемов), вызывать смог.
Поэтому в настоящее время применяются различные методы очистки от ходящих газов от диоксида серы: методы нейтрализации диоксида серы, каталитические методы окисления, адсорбционные методы с выделением диоксида серы из газового потока с последующей утилизацией.
Методы нейтрализации диоксида серы. Эти методы основаны на поглощении SO2 из газов растворами или суспензиями различных реагентов.
Известковый метод заключается во взаимодействии диоксида серы с известняком или известью.
СаСО3 + SO2 CaSO3 + CO2
СаО + SO2 CaSO3
2CaSO3 +O2 2CaSO4
Преимущества метода - небольшие капитальные затраты, возможность использования технологического оборудования из некислотоупорных материалов, простота и надежность оборудования; образующийся шлам (влажный гипс) после соответствующей подготовки может использоваться в строительной промышленности. Степень очистки газа этим методом достигает 98 %.
Содовый метод по химизму близок к известковому; основан на поглощении диоксида серы раствором соды с образованием бисульфита и сульфита натрия, которые после выделения из водного раствора могут использоваться как отдельные реагенты.
Аммиачные методы основаны на взаимодействии диоксида серы с водными растворами сульфита аммония.
SO2 + (NH4)2SO3 +H2O 2NH4HSO3
В зависимости от способа разложения бисульфита аммония различают несколько вариантов этого метода.
Аммиачно-сернокислый метод заключается в обработке бисульфита аммония серной кислотой.
2NH4HSO3 + H2SO4 2(NH4)2SO4 + 2Н2О + SO2
Половину выделившегося диоксида серы направляют для производства серной кислоты, используемой непосредственно в процессе, а вторая половина может быть использована как товарный продукт: диоксид серы или серная кислота.
В аммиачно-автоклавном методе адсорбцию диоксида серы про-водят раствором сульфит-бисульфита аммония. Отработанный раствор в этом случае разлагают в автоклаве при температуре 150-160 °С и давлении 0,5-0,6 МПа с получением элементарной серы и сульфата аммония. При этом протекает реакция
2NH4HSO3 + (NH4)2SO3 2(NH4)2SO4 + S + Н2О
Сульфат аммония и сера являются товарными продуктами и реагентами.
Аммиачно-циклический метод заключается в поглощении диоксида серы растворами сульфит-бисульфита аммония при низкой температуре и выделении его при нагревании. Степень очистки дымового газа составляет от 90 до 95 % при содержании в нем диоксида серы 0,4 %.
Магнезитовый метод основан на поглощении диоксида серы суспензией оксида магния:
MgO + SO2 + 6 Н2О MgSO3 + 6Н2О
или MgO + SO2 + ЗН2О MgSO33H2O
Образовавшиеся кристаллы сульфида магния отделяют от воды центрифугированием и обжигают во вращающихся печах с получением диоксида серы и оксида магния. Оксид магния возвращают в процесс, а диоксид серы направляют на переработку в серную кислоту.
Для предотвращения образования сульфата магния
2MgSO3 + О2 2MgSO4
в суспензию добавляют ингибитор - парафенилендиамин.
Степень очистки отходящих газов изменяется от 87 до 98 % при повышении рН среды с 5 до 7,7. Остаточное содержание диоксида серы в газах, очищенных по магнезитовому методу, составляет 0,03-0,06 %.
Цинковый метод основан на поглощении диоксида серы суспензией оксида цинка.
ZnO + SO2 + 2,5H2O ZnSO32,5H2O
ZnO + 2SO2 +H2O Zn(HSO3)2
Кристаллы сульфита цинка отделяют фильтрованием или центрифугированием и разлагают при температуре 300-350 °С на воду, диоксид серы и оксид цинка. Оксид цинка возвращают в производство, диоксид серы используется как товарный продукт.
Каталитические методы окисления диоксида серы. В настоящее время в нашей стране внедрен на многих предприятиях «реверс-процесс» (разработка АО «Реверс-процесс», г. Новосибирск). Этот процесс каталитической очистки промышленных газов осуществляют, изменяя направление фильтрации очищаемого газа в слое катализатора через каждые 5-100 минут на противоположное. На катализаторе происходит превращение токсичных примесей в безвредные. Выделяющееся в ходе процесса тепло служит дня нагрева очищаемого газа, что обеспечивает автотермичность процесса. Периодический реверс газового потока позволяет создать в центре слоя катализатора высокотемпературную зону реакции (300-600 °С), а торцевым слоям инерта отводится роль регенераторов тепла.
Способ применяется для очистки газов от углеводородов, спиртов, растворителей и других органических примесей, оксидов серы и азота с эффективностью 95-98 %.
Процесс «реверс - SO2 в SO3» можно использовать для очистки отходящих газов в производстве серной кислоты, цветных металлов, сжигания серы, обжига колчедана, переработке сероводорода и т.д. Образующийся триоксид серы абсорбируется серной кислотой или олеумом с получением концентрированной серной кислоты (рис. 4.5).
Рис. 4.5. Принципиальная технологическая схема очистки
