Несимметричная нагрузка приемника
При симметричной системе напряжений и несимметричной нагрузке, когда Za ≠ Zb ≠ Zc и φa ≠ φb ≠ φc токи в фазах потребителя различны и определяются по закону Ома. В данном случае нейтральный провод обеспечивает симметрию фазных напряжений приемника при несимметричной нагрузке. Поэтому однофазные несимметричные нагрузки, например, электрические лампы накаливания включают в четырехпроводную сеть. Режим работы каждой фазы нагрузки, находящейся под неизменным фазным напряжением генератора, не будет зависеть от режима работы других фаз.
44 Соединение обмоток генератора и потребителей треугольником. Мощность трехфазной системы.
При соединении источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам.
Рис. 3.12
Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению. UЛ = UФ.
В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам
İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.
Симметричная нагрузка
При симметричной нагрузке при соединении треугольником действующее значение линейного тока в раз больше действующего значения фазного тока и UЛ = UФ; IЛ = IФ. При равномерной нагрузке фаз расчет трехфазной цепи соединенной треугольником, можно свести к расчету одной фазы.
Несимметричная нагрузка приемника
При несимметричной нагрузке симметрия фазных токов İab, İbс, İca нарушается, поэтому линейные токи İA, İB, İC можно определить только расчетом. Важной особенностью соединения фаз приемника треугольником является то, что при изменении сопротивления одной из фаз режим работы других фаз остается неизменным, так как линейные напряжения генератора являются постоянными. Будет изменяться только ток данной фазы и линейные токи в проводах линии, соединенных с этой фазой. Поэтому схема соединения треугольником широко используется для включения несимметричной нагрузки.
50 Электрическая машина постоянного тока, основные ее элементы, их назначение. Принцип работы генератора и двигателя. Обратимость машины постоянного тока.
Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой). На рис. 1 изображена конструктивная схема машины постоянного тока
Рис. 1
Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток. Магнитный поток может создаваться постоянными магнитами, укрепленными на станине. Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5. Сердечник якоря для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.
Принцип работы генератора.
Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток
где U - напряжение на зажимах генератора; Rя - сопротивление обмотки якоря.
(2)
Уравнение (2) называется основным уравнением генератора. С появлением тока в проводниках обмотки возникнут электромагнитные силы. На рис. схематично изображен генератор постоянного тока, показаны направления токов в проводниках якорной обмотки.
В
оспользовавшись
правилом левой руки, видим, что
электромагнитные силы создают
электромагнитный момент Мэм,
препятствующий вращению якоря
генератора.
Чтобы машина работала
в качестве генератора, необходимо
первичным двигателем вращать ее якорь,
преодолевая тормозной электромагнитный
момент, возникающий по правилу
Ленца.
Принцип работы двигателя
Под действием напряжения, подведенного к якорю двигателя, в обмотке якоря появится ток Iя. При взаимодействии тока с магнитным полем индуктора возникает электромагнитный вращающий момент
где CM - коэффициент, зависящий от конструкции двигателя. На рис. изображен схематично двигатель постоянного тока, выделен проводник якорной обмотки.
Т
ок
в проводнике направлен от нас. Направление
электромагнитного вращающего момента
определится по правилу левой руки. Якорь
вращается против часовой стрелки. В
проводниках якорной обмотки индуцируется
ЭДС, направление которой определяется
правилом правой руки. Эта ЭДС направлена
встречно току якоря, ее называют
противо-ЭДС.
Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя.
51 Генераторы постоянного тока с независимым и параллельным возбуждением: схемы включения, характеристики.
Обмотки независимого и параллельного возбуждения изготовляют из провода малого сечения, они имеют большое число витков
Генератор с независимым возбуждением.
Рис. 120. Принципиальная схема генератора с независимым возбуждением
Характерной особенностью генератора с независимым возбуждением (рис. 120) является то, что его ток возбуждения Iв не зависит от тока якоря Iя, а определяется только напряжением UB, подаваемым на обмотку возбуждения, и сопротивлением RB цепи возбуждения. Обычно ток возбуждения невелик и составляет 2—5 % номинального тока якоря. Для регулирования напряжения генератора в цепь обмотки возбуждения часто включают регулировочный реостат Rрв.
Характеристика холостого хода генератора (рис. 121, а) — зависимость напряжения U0 при холостом ходе от тока возбуждения Iв при отсутствии нагрузки Rн т. е. при Iн = Iя = 0 и при постоянной частоте вращения п. При холостом ходе, когда цепь нагрузки разомкнута, напряжение генератора U0равно его э. д. с. Е0 = сЕФn. Так как при снятии характеристики холостого хода частота вращения п поддерживается неизменной, то напряжение U0 зависит только от магнитного потока Ф. Поэтому характеристика холостого хода будет подобна зависимости потока Ф от тока возбуждения Iя(магнитной характеристике магнитной цепи генератора).
Э. д. с. машины изменяется пропорционально частоте вращения п, поэтому при n2<n1 характеристика холостого хода лежит ниже кривой для п1. При изменении направления вращения генератора изменяется направление э. д. с. Е, индуцированной в обмотке якоря, а следовательно, и полярность щеток.
Внешняя характеристика генератора (рис. 121,6) представляет собой зависимость напряжения U от тока нагрузки Iн = Iя при постоянных частоте вращения п и токе возбуждения Iв. Напряжение генератора U всегда меньше его э. д. с. Е на значение падения напряжения IяRя во всех обмотках, включенных последовательно в цепь якоря.
С увеличением нагрузки генератора (тока обмотки якоря Iя = Iн) напряжение генератора уменьшается по двум причинам: I) из-за увеличения падения напряжения IяRя в цепи обмотки якоря; 2) из-за уменьшения э. д. с. Е = сЕФn в результате размагничивающего действия потока якоря.
Регулировочная характеристика генератора (рис. 121, в) представляет собой зависимость тока возбуждения Iв от тока нагрузки Iн при неизменном напряжении U и частоте вращения п. Она показывает, как надо регулировать ток возбуждения, чтобы поддерживать постоянным напряжение генератора при изменении нагрузки. Очевидно, что в этом случае по мере роста нагрузки нужно увеличивать ток возбуждения.
Достоинствами генератора с независимым возбуждением являются возможность регулирования напряжения в широких пределах от 0 до Umах путем изменения тока возбуждения и малое изменение напряжения генератора под нагрузкой. Однако он требует наличия внешнего источника постоянного тока для питания обмотки возбуждения.
Рис. 121. Характеристики генератора с независимым возбуждением: а — холостого хода; б — внешняя; в — регулировочная
Генератор с параллельным возбуждением.
Рис. 122. Принципиальная схема генератора с параллельным возбуждением (а) и внешние характеристики генераторов с независимым и параллельным возбуждением (б)
В этом генераторе (рис. 122, а) ток обмотки якоря Iяразветвляется во внешнюю цепь нагрузки Rн (ток Iн) и в обмотку возбуждения (ток Iв); ток Iв для машин средней и большой мощности составляет 2—5 % номинального значения тока в обмотке якоря. В машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от обмотки якоря генератора. Однако самовозбуждение генератора возможно только при выполнении ряда условий.
1. Для начала процесса самовозбуждения генератора необходимо наличие в магнитной цепи машины потока остаточного магнетизма, который индуцирует в обмотке якоря э. д. с. Eост. Эта э. д. с. обеспечивает протекание по цепи «обмотка якоря — обмотка возбуждения» некоторого начального тока.
2. Магнитный поток, создаваемый обмоткой возбуждения, должен быть направлен согласно с магнитным потоком остаточного магнетизма. В этом случае в процессе самовозбуждения будет нарастать ток возбуждения Iв и, следовательно, магнитный поток Ф машины э. д. с. Е. Это будет продолжаться до тех пор, пока из-за насыщения магнитной цепи машины не прекратится дальнейшее увеличение Ф, а следовательно, Е и Iв. Совпадение по направлению указанных потоков обеспечивается путем правильного присоединения обмотки возбуждения к обмотке якоря. При неправильном ее подключении происходит размагничивание машины (исчезает остаточный магнетизм) и э. д. с. Е уменьшается до нуля.
3. Сопротивление цепи возбуждения RB должно быть меньше некоторого предельного значения, называемого критическим сопротивлением. Поэтому для быстрейшего возбуждения генератора рекомендуется при включении генератора в работу полностью выводить регулировочный реостат Rрв, включенный последовательно с обмоткой возбуждения (см. рис. 122, а). Это условие ограничивает также возможный диапазон регулирования тока возбуждения, а следовательно, и напряжения генератора с параллельным возбуждением. Обычно уменьшать напряжение генератора путем увеличения сопротивления цепи обмотки возбуждения можно лишь до (0,6-0,7) Uном
Внешняя характеристика генератора (кривая 1 на рис. 122, б) представляет собой зависимость напряжения U от тока нагрузки Iн при неизменных значениях частоты вращения п и сопротивления цепи возбуждения RB. Она располагается ниже внешней характеристики генератора с независимым возбуждением (кривая 2). Объясняется это тем, что кроме тех же двух причин, вызывающих уменьшение напряжения с ростом нагрузки в генераторе с независимым возбуждением (падение напряжения в цепи якоря и размагничивающее действие реакции якоря), в рассматриваемом генераторе существует еще третья причина — уменьшение тока возбуждения. Так как ток возбуждения IB = U/RB, т. е. зависит от напряжения U машины, то с уменьшением напряжения по указанным двум причинам уменьшается магнитный поток Ф и э. д. с. генератора Е, что приводит к дополнительному уменьшению напряжения. Максимальный ток Iкр, соответствующий точке а, называется критическим.
При коротком замыкании обмотки якоря ток Iк генератора с параллельным возбуждением мал (точка б), так как в этом режиме напряжение и ток возбуждения равны нулю. Поэтому ток короткого замыкания создается только э. д. с. от остаточного магнетизма и составляет (0,4 -0,8) Iном. Внешняя характеристика точкой а делится на две части: верхнюю — рабочую и нижнюю — нерабочую. Обычно используется не вся рабочая часть, а только некоторый ее отрезок. Работа на участке аб внешней характеристики неустойчива; в этом случае машина переходит в режим, соответствующий точке б, т. е. в режим короткого замыкания.
Характеристику холостого хода генератора с параллельным возбуждением снимают при независимом возбуждении (когда ток в якоре Iя = 0), поэтому она ничем не отличается от соответствующей характеристики для генератора с независимым возбуждением (см. рис. 121, а). Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и характеристика для генератора с независимым возбуждением (см. рис. 121, в).
52 Генераторы постоянного тока со смешанным возбуждением: схема включения, характеристики.
Генератор со смешанным возбуждением.
Рис. 124. Принципиальная схема генератора со смешанным возбуждением (а) и его внешние характеристики (б)
В этом генераторе (рис. 124, а) чаще всего параллельная обмотка возбуждения является основной, а последовательная — вспомогательной. Обе обмотки находятся на одних полюсах и соединены так, чтобы создаваемые ими магнитные потоки складывались (при согласном включении) или вычитались (при встречном включении).
Генератор со смешанным возбуждением при согласном включении его обмоток возбуждения позволяет получить приблизительно постоянное напряжение при изменении нагрузки. Внешняя характеристика генератора (рис. 124, б) может быть в первом приближении представлена в виде суммы характеристик, создаваемых каждой обмоткой возбуждения. При включении только одной параллельной обмотки, по которой проходит ток возбуждения Iв1, напряжение генератора U постепенно уменьшается с ростом тока нагрузки Iн(кривая 1). При включении одной последовательной обмотки, по которой проходит ток возбуждения Iв2 = Iн напряжение U возрастает с увеличением тока Iн (кривая 2). Если подобрать число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение Uпосл компенсировало суммарное падение напряжения ?U при работе машины с одной только параллельной обмоткой, то можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до номинального значения оставалось почти неизменным (кривая 3). Практически оно изменяется в пределах 2—3 %. Увеличивая число витков последовательной обмотки, можно получить характеристику, при которой напряжение Uном будет больше напряжения U0 при холостом ходе (кривая 4); такая характеристика обеспечивает компенсацию падения напряжения не только во внутреннем сопротивлении цепи якоря генератора, но и в линии, соединяющей его с нагрузкой. Если последовательную обмотку включить так, чтобы создаваемый ею магнитный поток был направлен против потока параллельной обмотки (встречное включение), то внешняя характеристика генератора при большом числе витков последовательной обмотки будет круто падающей (кривая 5).
53 Классификация двигателей постоянного тока: назначение, схемы включения. Вращающий момент, скорость вращения, полезная мощность и КПД.
Классификация по способам возбуждения электродвигателей постоянного тока
Под возбуждением электрических машин понимают создание в них магнитного поля, необходимого для работы электродвигателя. Схемы возбуждения электродвигателей постоянного тока показаны на рисунке.
Схемы возбуждения электродвигателей постоянного тока: а - независимое, б - параллельное, в - последовательное, г - смешанное
По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:
1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.
2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.
3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.
4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.
Основные уравнения и величины, характеризующие двигатели. Такими величинами являются: механическая мощность на валу Р2, питающее напряжение U, ток, потребляемый из сети I, ток якоря Iя, ток возбуждения Iв, частота вращения n, электромагнитный момент Мэм. Зависимость между этими величинами описывается:
Ø уравнением электромагнитного момента:
Мэм = См Iя Ф;
Ø уравнением электрического состояния цепи якоря:
U = Епр + Rя Iя; (1.4)
Епр = СEnФ;
Ø уравнением моментов:
Мэм = Мс + Мпот + Мд,
где Мс – момент сопротивления на валу, создаваемый нагрузкой; Мпот – момент потерь, создаваемый всеми видами потерь в двигателе; Мд – динамический момент, создаваемый инерционными силами;
Мощность и потери.
Характер подводимой к машине мощности зависит от ее режима работы:
у генераторов это механическая мощность P1 = k1Mn, у двигателей – электрическая мощность P1 =UI.
Характер снимаемой с машины полезной мощности – противоположный: у генератора это электрическая мощность P2 = UI, у двигателя – механическая P2=k2Mn.
В машине всегда есть мощность потерь ∆Р, которая складывается из
мощности электрических потерь (потери в меди) ∆Рэл = RI2, идущих на нагрев обмоток,
мощности магнитных потерь (потери в стали) ∆Рмаг,
мощности механических потерь (потери на трение) ∆Рмех и
мощности добавочных потерь ∆Рдоб ≈ 0,01 Рном, где Рном – номинальная мощность.
Таким образом, ∆Р = ∆Рмех + ∆Рмаг + ∆Рэл +∆Рдоб и Р1 = Р2 +∆Р.
КПД машины. КПД машины можно рассчитать по формуле η = P 2 / P1. При экспериментальном определении КПД проще и, главное, точнее измерять не механическую мощность, а электрическую, и рассчитывать потери.
Поэтому для определения КПД генератора пользуются формулой
η = P2 / (P2 + ∆Р)
и КПД двигателя
η = (P1 - ∆Р) / Р1.
КПД машин постоянного тока растет с увеличением мощности машин. Так, у микромашин мощностью до 0,1 кВт он составляет всего 30 – 40 %, у машин мощностью 10 кВт – 83 % и у машин 1000 кВт - 96 %
.
КПД меняется также в зависимости от нагрузки (рис. 1.15). Из графика следует, что при малых нагрузках КПД резко падает, поэтому недогруженную машину невыгодно эксплуатировать.
54 Механические характеристики двигателей постоянного тока. Регулирование скорости вращения и реверсирование. Пуск двигателей постоянного тока.
Регулирование частоты вращения электродвигателя постоянного тока
Частота вращения двигателя постоянного тока:
где U — напряжение питающей сети; Iя — ток якоря; Rя — сопротивление цепн якоря; kc — коэффициент, характеризующий магнитную систему; Ф — магнитный поток электродвигателя.
Из формулы видно, что частоту вращения электродвигателя постоянного тока можно регулировать тремя путями: изменением потока возбуждения электродвигателя, изменением подводимого к электродвигателю напряжения и изменением сопротивления в цепи якоря.
Наиболее широкое применение получили первые два способа регулирования, третий способ применяют редко: он неэкономичен, скорость двигателя при этом значительно зависит от колебаний нагрузки. Механические характеристики, которые при этом получаются, показаны на рисунке.
Механические характеристики электродвигателя постоянного тока при различных способах регулирования частоты вращения
Жирная прямая — это естественная зависимость скорости от момента на валу, или, что то же, от тока якоря. Прямая естественной механической характеристики несколько отклоняется от горизонтальном штриховой линии. Это отклонение называют нестабильностью, нежесткостью, иногда статизмом. Группа непаралельных прямых I соответствует регулированию скорости возбуждением, параллельные прямые II получаются в результате изменения напряжения якоря, наконец, веер III — это результат введения в цепь якоря активного сопротивления.
Величину тока возбуждения двигателя постоянного тока можно регулировать с помощью реостата или любого устройства, активное сопротивление которого можно изменять по величине, например транзистора. При увеличении сопротивления в цепи ток возбуждения уменьшается, частота вращения двигателя увеличивается. При ослаблении магнитного потока механические характеристики располагаются выше естественной (т. е. выше характеристики при отсутствии реостата). Повышение частоты вращения двигателя вызывает усиление искрения под щетками. Кроме того, при работе электродвигателя с ослабленным потоком уменьшается устойчивость его работы, особенно при переменных нагрузках на валу. Поэтому пределы регулирования скорости таким способом не превышают 1,25 - 1,3 от номинальной.
Регулирование изменением напряжения требует источника постоянного тока, например генератора или преобразователя. Такое регулирование используют во всех промышленных системах электропривода: генератор - двигатель постоянного тока (Г - ДПТ),электромашинный усилитель - двигатель постоянного тока (ЭМУ - ДПТ), магнитный усилитель - двигатель постоянного тока (МУ - ДПТ), тиристорный преобразователь - двигатель постоянного тока (Т - ДПТ).
Пуск двигателей постоянного тока
В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. инапряжение в якоре равна нулю, поэтому Iп = U / Rя.
Сопротивление цепи якоря невелико, поэтому пусковой ток превышает в 10 - 20 раз и более номинальный. Это может вызвать значительные электродинамические усилия в обмотке якоря и чрезмерный ее перегрев, поэтому пуск двигателя производят с помощью пусковых реостатов - активных сопротивлений, включаемых в цепь якоря.
Двигатели мощностью до 1 кВт допускают прямой пуск.
Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя.
В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение.
55 Назначение, классификация и область применения машин переменного тока. Устройство асинхронных электродвигателей. Получение и частота вращения магнитного поля статора.
56 Принцип работы асинхронного двигателя с короткозамкнутым ротором. Скольжение, частота вращения ротора, вращающий момент и его зависимость от скольжения и напряжения. 57 Пуск трехфазных асинхронных двигателей с короткозамкнутым ротором. Механические характеристики и способы регулирования скорости вращения. Схема пуска, реверсирование. 58 Асинхронный двигатель с фазным ротором: устройство, назначение. Схемы пуска и реверса. Механические и рабочие характеристики. 59 Синхронный генератор и двигатель. Их устройство, принцип действия и область применения. Пуск синхронного двигателя. Механическая характеристика.
