- •Глава 1. Природа звука, уравнение звуковой волны
- •Глава 2. Основные характеристики звуковых волн.
- •2.1. Скорость звука.
- •2.2. Распространениезвуковых волн.
- •2.3. Интенсивность звука
- •2.4. Объективные характеристики звука.
- •2.5. Субъективные характеристики звука.
- •Глава 3. Эффект Доплера для звука
- •Закон Гука
- •Основное уравнение молекулярно-кинетической теории
- •Вывод основного уравнения мкт
- •Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •19. Распределение Больцмана
- •3 Ср, cv и связь между ними (уравнения Майера)
- •Частные случаи первого закона термодинамики для изопроцессов
- •Частные случаи первого закона термодинамики для изопроцессов
- •Изобарный]
- •Вывод формулы для теплоёмкости в данном процессе[]
- •Содержание
- •Электростатика
- •Потенциал точечного заряда
- •Потенциал гауссовой объёмной плотности заряда
- •Сущность и формулировки второго закона термодинамики
- •Следствия
- •Уравнение состояния
- •Вывод уравнения
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •30. Твердые тела. 2. Кристаллические тела. 3. Моно- и поликристаллы. 4. Аморфные тела. .5. Упругость. 6. Пластичность.
- •Абсолютная влажность]
- •Относительная влажность
- •Оценка относительной влажности[править | править вики-текст]
- •Пересыщенный водяной пар[править | править вики-текст]
- •Средства и методы контроля
- •Значение
- •В цветоводстве
- •Выделение фаз[править | править вики-текст]
- •Единицы измерения и особенности определения понятия «влажность»
- •Методы определения
- •Влажность воздуха[править | править вики-текст]
- •Величины измерения влажности газа
Частные случаи первого закона термодинамики для изопроцессов
При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:
При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:
При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:
Адиабатный процесс - термодинамический процесс в теплоизолированной системе.
Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.
Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.
Первый закон термодинамики - Изменение внутренней энергии системы при ее переходе из одного состояния в другое равно сумме количества теплоты, подведенного к системе извне, и работы внешних сил, действующих на нее:
Первый закон термодинамики - количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:
Частные случаи первого закона термодинамики для изопроцессов
При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:
При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:
При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:
Адиабатный процесс - термодинамический процесс в теплоизолированной системе.
Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.
24. Теплоёмкость идеального газа — отношение количества теплоты, сообщённого газу, к изменению температуры δТ, которое при этом произошло.
Молярная теплоёмкость
Молярная теплоёмкость — теплоёмкость 1 моля идеального газа.
Теплоёмкость идеального газа в изопроцессах[править | править вики-текст]
Адиабатический[править | править вики-текст]
В
адиабатическом
процессе
теплообмена с окружающей средой не
происходит, то есть
.
Однако, объём, давление
и температура меняются, то есть
.
Следовательно,
теплоёмкость идеального газа в
адиабатическом процессе равна нулю:
.
Изотермический[править | править вики-текст]
В
изотермическом
процессе
постоянна температура, то есть
.
При изменении объёма газу передаётся
(или отбирается) некоторое количество
тепла. Следовательно, теплоёмкость
идеального газа равна плюс-минус
бесконечности:
Изохорный[править | править вики-текст]
В
изохорном
процессе
постоянен объём, то есть
.
Элементарная работа газа равна
произведению изменения объёма на
давление, при котором происходит
изменение (
).
Первое Начало Термодинамики для
изохорного процесса имеет вид:
А для идеального газа
Таким образом,
где
—
число степеней
свободы
частиц газа.
Другая
формула:
,
где γ — показатель
адиабаты,
R — универсальная
газовая постоянная.
