- •Глава 1. Природа звука, уравнение звуковой волны
- •Глава 2. Основные характеристики звуковых волн.
- •2.1. Скорость звука.
- •2.2. Распространениезвуковых волн.
- •2.3. Интенсивность звука
- •2.4. Объективные характеристики звука.
- •2.5. Субъективные характеристики звука.
- •Глава 3. Эффект Доплера для звука
- •Закон Гука
- •Основное уравнение молекулярно-кинетической теории
- •Вывод основного уравнения мкт
- •Средняя квадратичная скорость молекул — среднее квадратическое значение модулей скоростей всех молекул рассматриваемого количества газа
- •19. Распределение Больцмана
- •3 Ср, cv и связь между ними (уравнения Майера)
- •Частные случаи первого закона термодинамики для изопроцессов
- •Частные случаи первого закона термодинамики для изопроцессов
- •Изобарный]
- •Вывод формулы для теплоёмкости в данном процессе[]
- •Содержание
- •Электростатика
- •Потенциал точечного заряда
- •Потенциал гауссовой объёмной плотности заряда
- •Сущность и формулировки второго закона термодинамики
- •Следствия
- •Уравнение состояния
- •Вывод уравнения
- •Внутренняя энергия газа Ван-дер-Ваальса
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса
- •30. Твердые тела. 2. Кристаллические тела. 3. Моно- и поликристаллы. 4. Аморфные тела. .5. Упругость. 6. Пластичность.
- •Абсолютная влажность]
- •Относительная влажность
- •Оценка относительной влажности[править | править вики-текст]
- •Пересыщенный водяной пар[править | править вики-текст]
- •Средства и методы контроля
- •Значение
- •В цветоводстве
- •Выделение фаз[править | править вики-текст]
- •Единицы измерения и особенности определения понятия «влажность»
- •Методы определения
- •Влажность воздуха[править | править вики-текст]
- •Величины измерения влажности газа
30. Твердые тела. 2. Кристаллические тела. 3. Моно- и поликристаллы. 4. Аморфные тела. .5. Упругость. 6. Пластичность.
Каждый может легко разделить тела на твердые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, какими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево,уголь) — это органические вещества. Другие будут размягчаться (смола) даже при невысоких температурах — это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на графике (рис. 12). Это и есть кристаллические тела. Такое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристаллические тела — это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.
Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.
Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств.
Большинство твердых тел имеют поликристаллическое строение (минералы, сплавы, керамика).
Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки.
Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны. Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определенная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.
Упругость — свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших деформацию тел. Для упругих деформаций справедлив закон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям , где — механическое напряжение,
— относительное удлинение, Е — модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.
Пластичность — свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после того, как действие этих сил прекратится.
31. Капилля́рность (от лат. capillaris — волосяной; отсюда происходит встречавшийся ранее в русскоязычной научной литературе термин воло́сность), капиллярность — явление, подъема или опускания жидкости в капиллярах, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. В поле тяжести (или сил инерции, например при центрифугировании пористых образцов) поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.
Благодаря капиллярности возможны жизнедеятельность животных и растений, различные химические процессы, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем), однако важно отметить, что в биологических объектах капиллярный механизм перемещения жидкости не является единственным (важную роль играет осмос).
31 Относительная влажность — отношение парциального давления паров воды в газе (в первую очередь, в воздухе) к равновесному давлению насыщенных паров при данной температуре. Обозначается греческой буквой φ.
