Скачиваний:
24
Добавлен:
15.06.2014
Размер:
17.73 Кб
Скачать
  1. Дискретизация и квантование сигналов.

Аналоговый сигнал – сигнал, принимающий бесконечное число значений и заданный в непрерывном времени (определен для любого момента времени).Дискретный сигнал – сигнал, принимающий бесконечное число значений и заданный в дискретном времени (определен только в моменты времени, кратные периоду дискретизации Т).Цифровой сигнал – сигнал, принимающий конечное число значений, заданный в дискретном времени и представленный в виде цифровых кодов. Цифровой сигнал может быть получен из аналогового путем его дискретизации по времени (выполняется на основании теоремы отсчетов), квантования по уровню (выполняется с учетом динамического диапазона исходного аналогового сигнала) и кодирования. Под дискретизацией понимают переход от непрерывного сигнала к близкому (в определенном смысле) дискретному сигналу, описываемому разрывной функцией времени. Пример дискретного сигнала – последовательность коротких импульсов с изменяющейся амплитудой (последняя выступает в данном случае в качестве информативного параметра). Обработка и передача дискретной информации имеет ряд преимуществ по сравнению с информацией, заданной в непрерывном виде. Дискретные сигналы в меньшей степени подвержены искажениям в процессе передачи и хранения, они легко преобразуются в двоичный цифровой код и обрабатываются с помощью цифровых вычислительных устройств. Процесс дискретизации состоит обычно из двух этапов: дискретизации по времени и дискретизации (квантования) по уровню. Дискретизация аналогового сигнала по времени – процесс формирования выборки аналогового сигнала в моменты времени, кратные периоду дискретизирующей последовательности Дt. Дискретизирующая последовательность – периодическая последовательность отсчетов времени, задающая сетку дискретного времени.Период дискретизации Дt – интервал времени между двумя последовательными отсчетами аналогового сигнала (шаг дискретизации по времени).При выборе частоты дискретизации по времени можно воспользоваться теоремой В.А. Котельников. Теорема отсчетов (теорема Котельникова) – теорема, определяющая выбор периода дискретизации Дt аналогового сигнала в соответствии с его спектральной характеристикой. Согласно теореме, всякий непрерывный сигнал, имеющий ограниченный частотный спектр, полностью определяется своими дискретными значениями в моменты отсчета, отстоящие друг от друга на интервалы времени Дt = 1/2Fmax) , где Fmax – максимальная частота в спектре сигнала. Иначе, дискретизация по времени не связана с потерей информации, если частота дискретизации fдискр = 1/Дt в два раза выше указанной верхней частоты сигнала Fmax. Согласно теореме Котельникова, нет необходимости передавать бесконечное множество всех значений непрерывного сигнала x(t), достаточно передавать лишь те его значения, которые отстоят друг от друга на расстоянии Дt = 1/(2Fmax). Для восстановления сигнала x(t) на вход идеального фильтра низких частот, имеющего полосу пропускания частот от 0 до Fmax, необходимо подать последовательность узких импульсов с амплитудой, соответствующей дискретным отсчетам сигнала x(ti) в моменты времени ti=iДt. Поскольку теорема отсчетов (теорема Котельникова) сформулирована для сигнала с ограниченным спектром, а реальные сигналы имеют неограниченную спектральную плотность, то при расчетах Дt=1/(2Fmax) используют приближенное значение Fmax (например, активную ширину спектра, определенную по амплитудному критерию, по критерию 90%-ного содержания энергии или средней мощности сигнала). Кроме того, и идеальный фильтр низких частот, необходимый для восстановления сигнала в соответствии с теоремой, является физически нереализуемым, так как предъявляемые к нему требования (идеально прямоугольная форма амплитудно-частотной характеристики, отсутствие фазового сдвига в рассматриваемой полосе частот от 0 до Fmax) оказываются противоречивыми и могут выполняться лишь с определенной погрешностью. Учитывая сказанное, частоту дискретизации по времени обычно принимают в 1,5–2,5 раза больше значения, рассчитанного по теореме Котельникова, т.е. fдискр = (3 – 5)Fmax.

Квантование (дискретизация) сигнала по уровню – процесс отображения бесконечного множества значений аналогового сигнала на некоторое конечное множество (определяемое числом уровней квантования). Отличительной особенностью дискретизации по уровню является замена непрерывной шкалы уровней сигнала x(t) дискретной шкалой xд.i(I = 1, 2,...,m), в которой различные значения сигнала отличаются между собой не менее чем на некоторое фиксированное (или выбираемое в процессе квантования) значение Дx, называемое шагом квантования. Шаг квантования – величина, равная интервалу между двумя соседними уровнями квантования (определена только для случая равномерного квантования). Необходимость квантования вызвана тем, что цифровые вычислительные устройства могут оперировать только с числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. При равномерном квантовании (Дx=const) число разрешенных дискретных уровней xi составляет: m = ( xmax и xmin )/∆x где xmax и xmin – соответственно верхняя и нижняя границы диапазона изменения сигнала. Ошибка квантования – величина, определяемая как ж(х) = x – xд.i, где x – кодируемая дискретная величина, xд.i – дискретизированный сигнал. Шум квантования – случайная функция времени, определяемая как зависимость ошибки квантования от времени. Чем меньше значение dx, тем меньше получаемая ошибка. Если в результате квантования любое из значений сигнала х(t), попавшее в интервал (хд.i – Дх/2; хд.i + Дх/2), округляется до хд, то возникающая при этом ошибка ж(х) не превышает половины шага квантования, т.е. max|ж(х)|=0,5Дx. На практике шаг квантования dx выбирают исходя из уровня помех, в той или иной форме присутствующих при измерении, передаче и обработке реальных сигналов. Если функция x(t) заранее неизвестна, а шаг квантования Дх достаточно мал по сравнению с диапазоном изменения сигнала (xmax–xmin), то принято считать ошибку квантования ж(х) случайной величиной, подчиняющейся равномерному закону распределения. Тогда плотность вероятности f1(ж) для случайной величины ж, принимает значение 1/(Дх) внутри интервала (–Дх/2; +Дх/2) и равна нулю вне этого интервала. При Дх=const относительная погрешность квантования дx=ж(х)/x существенно зависит от текущего значения сигнала x(t). В связи с этим при необходимости обработки и передачи сигналов, изменяющихся в широком диапазоне, нередко используется неравномерное (нелинейное) квантование, когда шаг Дх принимается малым для сигналов низкого уровня и увеличивается с ростом соответствующих значений сигнала (например, Дх выбирают пропорционально логарифму значения |x(t)|). Выбор шага Дхi=xд.i–xд.i-1 осуществляется еще и с учетом плотности распределения случайного сигнала (для более вероятных значений сигнала шаг квантования выбирают меньшим, для менее вероятных – большим). Таким образом удается обеспечить высокую точность преобразования при ограниченном (не слишком большом) числе разрешенных дискретных уровней сигнала x(t).

Соседние файлы в папке doc