Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_GOSy 2015.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
334.76 Кб
Скачать
  1. Разработка нефтегазовых залежей с газовой шапкой

Этот режим проявляется в таких геологических условиях, при которых источником пластовой энергии является упругость газа, сосредоточенного в газовой шапке. Для этого необходимо, чтобы залежь была изолирована по периферии непроницаемыми породами или тектоническими нарушениями.

Законтурная вода, если она имеется, не должна быть активной. Нефтяная залежь должна находиться в контакте с газовой шапкой. При таких условиях начальное пластовое давление будет равно давлению насыщения, так как дренирование залежи происходит при непрерывном расширении газовой шапки и нефть постоянно находится в контакте с газом.

Темп изменения среднего пластового давления при разработке такой залежи может быть различным в зависимости от темпов разработки и от соотношения объемов газовой шапки и нефтенасыщенной части залежи. Такую залежь можно рассматривать как сосуд с жидкостью и газом, причем отбор жидкости сопровождается расширением газа.

На рис. 2.6 представлены результаты расчетов поведения пластового давления во времени в процессе разработки залежи в режиме газовой шапки.

Рис. 2.6. Изменение во времени безразмерного среднеинтегрального пластового давления при разных отношениях объема нефтяной оторочки и газовой шапки: 1- n = 0,25; 2 - n = 0,5; 3 - n = 1; 4 - n = 2; 5 - n = 4; 6 - n = 8

Из рисунка видно, что изменение пластового давления происходит по криволинейному закону и темп падения давления тем больше, чем меньше объем газовой шапки по отношению к объему нефтяной части залежи (чем больше n).

При объеме нефти в залежи, в четыре раза превышающем объем начальной газовой шапки, через десять лет давление снизится на 50 % (P = 0,5). Тогда как при объеме нефти, составляющем 0,25 от объема газовой шапки, к тому же времени давление снизится только на 5,8 %.

Таким образом, разработка месторождения при режиме газовой шапки неизбежно сопровождается падением пластового давления со всеми вытекающими из этого последствиями (уменьшение дебитов, сокращение периода фонтанирования, переход нефтяных скважин на газ и др.).

В реальных условиях разработка такого месторождения может быть осуществлена в условиях смешанного режима с помощью искусственного поддержания пластового давления закачкой воды в законтурную область или закачкой газа в газовую шапку.

Конечная нефтеотдача в условиях режима газовой шапки не достигает тех величин, что при режимах вытеснения нефти водой, и не превышает по приблизительным оценкам 0,4 - 0,5. Для этого режима характерен закономерный рост газового фактора и переход скважин на добычу чистого газа по мере выработки запасов нефти и расширения газовой шапки.

Режим газовой шапки в общем имеет подчиненное значение и сравнительно небольшое распространение. Продукция скважин, как правило, безводная.

Билет №15

  1. Методы снижения пусковых давлений газлифтных скважин

В момент пуска газлифтной скважины, т. е. когда уровень жидкости в межтрубном пространстве будет оттеснен до башмака, давление газа, действующее на этот уровень, будет уравновешиваться гидростатическим давлением столба жидкости в подъемных трубах. Это и будет то максимальное давление газа, которое называется пусковым, необходимое для пуска газлифтной скважины.

Величина пускового давления для двухрядного подъемника при кольцевой с-ме может быть оценена по формуле: h'ст – глубина погружения НКТ под статический уровень, м; ; L – глубина спуска НКТ,hст – статический уровень жид. в скв.;D– диаметр э/к; dн – диаметр наружного ряда НКТ ;dв – диаметр внутреннего ряда НКТ Для однорядной конструкции подъемника при кольцевой системе , Па

Все методы снижения пуск давления основаны на удалении части жидкости из подъемной колонны.

1.Метод продавливания жидкости в пласт заключается в том, что в кольцевое пространство нагнетают рабочий агент до максимального давления компрессора. Затем закрывают задвижку на подводящей линии и останавливают скв на некоторое время под давлением. Т.к. давление поднявшегося столба жидкости будет больше пластового, жидкость будет поступать в пласт. Уровень жидкости в скв упадёт, что даст при повторном пуске возможность выдавить оставшийся столб жидкости и пустить скв в эксплуатацию. Метод может успешно применяться только для скв, имеющих высокий коэффициент продуктивности.(отношение дебита к единице измерения давления)

2.Метод поршневания состоит в том, что сначала поршень снижают уровень жидкости до положения, при котором возможно выдавить оставшийся столб жидкости в некоторых случаях сначала пускают сжатый газ, когда же его давление дойдет до предельного, закрывают задвижку на газоподводящей трубе и приступают к поршневанию.

3.Метод постепенного допуска подъемных труб. Подъемные трубы первоначально спускают на такую глубину, при котором давление столба жидкости не превышает максимального давления компрессора. После продавки, когда уровень жидкости в скв понизится, глубину погружения труб увеличивают (путем их наращивания) и производят следующую продавку. Обычно каждое наращивание происходит в пределах 30-50 мин.(рекомендуется с низким коэфф. прод-ти).

4.Метод продавливанияпо центральной системе с последовательным переключением для работы по кольцевой системе. Метод применяется для подъемников небольшой глубины до 1000м.Указанные выше способы имеют 1 большой недостаток при продавке создается резкая депрессия на забое величина которая достигает 30-40 атм.

5.Применение пусковых клапанов. Поэтапное вытеснение жидкости.

6.Применение дополнительного компрессора. На скв-не устан-ся один или нес-ко передвижных компрессоров с повышенным Р для пуска скв. После запуска г/лифт скв на газораспределительном узле сквпереключ-сяРраб от стацион-го компрессора.

7. Переключение г/лифт скв с кольцевой системы на центральную. Переключение скв с кольцевой системы на центр, позволяет уменьшить Рпуск в 3-7 раз.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]