- •Производственная санитария и гигиена труда на железнодорожном транспорте
- •1. Основные характеристики трудового процесса, организация труда и отдыха работников, профессиональный отбор
- •1.1 Основные характеристики трудового процесса
- •1.2. Режим труда и отдыха, оптимальные режимы труда и отдыха
- •1.3. Питьевой режим
- •1.4. Режим питания
- •1.5. Режим сна и бодрствования
- •1.6. Профессиональный отбор на профессию
- •2. Вредные вещества
- •2.1. Вредные вещества и их классификация
- •2.2. Пути поступления, распределения и превращения в организме
- •2.3.Токсическое действие промышленных ядов в зависимости от их
- •2.4. Нормирование содержания вредных веществ в воздухе
- •2.5. Предельно допустимые концентрации (пдк) в воздухе производственных помещений
- •2.6. Заболевания, возникающие от воздействия вредных веществ
- •2.7. Средства коллективной и индивидуальной защиты
- •2.8. Методы измерения содержания вредных веществ
- •2.9. Производственная пыль, пылевая патология и профилактика
- •2.10. Методы определения запылённости воздушной среды
- •3. Метеорологические условия на производстве
- •3.1. Понятие о микроклимате производственного помещения. Основные параметры микроклимата
- •3.2. Влияние параметров микроклимата на здоровье и
- •3.3. Принципы нормирования параметров микроклимата. Зависимость параметров микроклимата от тяжести трудового процесса и климатических условий региона
- •Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин
- •3.4. Основные средства защиты от неблагоприятных факторов и
- •3.5. Методы и приборы контроля параметров микроклимата
- •4. Отопление
- •4.1. Гигиенические основы отопления. Метеорологические условия
- •4.2. Классификация систем отопления
- •4.3. Выбор систем отопления
- •4.4. Выбор и размещение отопительных приборов
- •4.5. Конструктивные элементы и узлы систем водяного отопления
- •4.6. Тепловой баланс помещения
- •4.7. Теплопередача через ограждения
- •4.8. Расчетные параметры климата и расчет теплозащитных
- •4.9. Добавочные теплопотери через ограждения
- •4.10. Правила обмера поверхностей ограждающих конструкций
- •4.11. Тепловой расчет приборов
- •4.12. Принципы гидравлического расчета систем
- •4.13. Принципы работы систем парового отопления
- •4.14. Панельно-лучистое отопление
- •4.15. Виды систем воздушного отопления
- •4.16. Газовое отопление
- •4.17. Электрическое отопление
- •5. Производственная вентиляция
- •5.1. Назначение и классификация вентиляции
- •5.2. Основы расчета вентиляции
- •5.3. Расчет поступлений тепла и влаги в помещение
- •5.4. Поступление в помещение вредных веществ
- •5.5. Естественная вентиляция
- •5.6. Аэрация зданий
- •5.7.Организация воздухообмена в помещении
- •5.8. Приточные системы механической вентиляции. Очистка приточного воздуха. Калориферы. Вентиляторы
- •5.9. Вытяжная местная механическая вентиляция
- •5.10. Вытяжная общеобменная вентиляция
- •5.11. Очистка воздуха от выбросов загрязняющих веществ
- •5.12. Воздушно-тепловые завесы
- •5.13. Расчет механической вентиляции
- •5.14. Увлажнение воздуха. I – d диаграмма
- •5.15. Санитарно-гигиенические основы кондиционирования
- •6. Производственное освещение
- •6.1. Световая среда и здоровье человека
- •6.2. Световое излучение и параметры, характеризующие световую среду
- •6.3 Виды и системы производственного освещения
- •6.4. Естественное освещение
- •6.5. Виды искусственного освещения
- •6.6. Источники света
- •6.7. Осветительные приборы (светильники)
- •6.8. Расчёт светотехнических установок искусственного освещения
- •Группы твердости светотехнических материалов
- •6.9. Особенности и критерии оценки освещения
- •6.10. Классификация и выбор способов освещения
- •6.11. Расчёт светотехнических установок искусственного
- •6.12. Контроль освещения
- •7. Защита от шума, ультразвука и инфразвука
- •7.2. Влияние шума на организм человека
- •7.3. Физические и физиологические характеристики шума
- •7.4. Классификация шумов
- •7.5. Гигиеническое нормирование
- •Пду звука и эквивалентные уровни звука на рабочих местах в дБа
- •7.6. Методы контроля шума на производстве
- •7.7. Методы и средства снижения и устранения вредного
- •7.8. Определение уровней звукового давления в расчетных точках
- •7.9. Звукоизоляция и звукопоглощение
- •7.10. Глушители шума
- •7.11. Ультразвук
- •Предельно допустимые уровни контактного ультразвука для работающих
- •7.12. Инфразвук
- •7.13. Требования к шумовым характеристикам машин
- •8. Защита от Вибрации
- •8.1. Основные характеристики вибрации
- •8.2. Классификация вибраций, воздействующих на человека
- •8.3. Действия вибрации на организм человека.
- •8.4. Нормирование вибрации
- •8.5. Измерение вибрации
- •8.6. Расчет амортизаторов
- •8.7. Контроль вибрационных характеристик машин
- •8.8. Защита от вибрации
- •9. Защита от электромагнитных полей
- •9.1. Источники электромагнитных полей и их характеристики
- •9.2. Воздействие электромагнитных полей на человека
- •9.3. Нормирование электромагнитных полей
- •Предельно допустимые уровни магнитных полей частотой 50 Гц
- •9.4. Мероприятия по защите от электромагнитных полей
- •9.5. Методы контроля напряженностей электрической и магнитной составляющих эмп
- •9.6. Электромагнитная безопасность при эксплуатации
- •10. Защита от ионизирующих излучений
- •10.1. Виды ионизирующих излучений
- •10.2. Источники ионизирующих излучений
- •10.3. Параметры ионизирующих излучений и единицы
- •10.4. Биологическое действие на человека и окружающую среду
- •10.5. Нормирование параметров ионизирующих излучений.
- •10.6. Организация работы с радиоактивными веществами и
- •10.7. Методы защиты организма человека от ионизирующих
- •10.8. Ликвидация и утилизация радиоактивных отходов
- •10.9. Методы дозиметрического контроля, приборы и средства
- •11. Защита от лазерных излучений
- •11.1. Природа, особенности и источники лазерного излучения
- •11.2. Классификация лазеров. Вредные и опасные факторы
- •11.3. Воздействие лазерных излучений на человека
- •11.4. Нормирование лазерных излучений
- •11.5. Мероприятия по защите от лазерных излучений
- •11.6. Контроль лазерных излучений
- •12. Средства индивидуальной защиты
- •12.1. Роль средств индивидуальной защиты в профилактике
- •12.2. Классификация средств индивидуальной защиты
- •12.3. Отдельные виды сиз
- •12.4. Обеспечение работающих средствами индивидуальной
- •13. Личная гигиена, Медико-санитарное обслуживание
- •13.1. Личная гигиена на производстве
- •13.2. Медико-санитарное обслуживание работников
- •14. Санитарно-гигиеничские требования
- •14.1. Санитарно-гигиенические требования к территории и планировке предприятия
- •14.2. Санитарно-гигиенические требования к производственным,
- •14.3. Санитарно-гигиенические требования к организации
- •Перечень приборов, аппаратуры и устройств для контроля факторов производственной среды
- •1. Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •2. Неионизирующие электромагнитные поля и излучения
- •3. Шум, ультразвук, вибрация
- •4. Тепловые излучения и микроклимат
- •Тепловые излучения и микроклимат
- •5. Химический фактор
- •6. Световая среда
- •7. Лазерное излучение
- •8.Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Нормируемые показатели освещения основных помещений общественных, жилых, вспомогательных зданий (из сНиП 23-05-95)
- •Лицевая сторона личной карточки личная карточка №__________
- •Оборотная сторона личной карточки
10. Защита от ионизирующих излучений
10.1. Виды ионизирующих излучений
Ионизирующее излучение – любое излучение, взаимодействие которого со средой приводит к образованию в ней заряженных атомов или молекул.
Альфа-излучение – поток ядер атомов гелия, наблюдающийся преимущественно у естественных радиоактивных элементов (радий, торий, уран, полоний и др.). Альфа-частицы распространяются в средах прямолинейно, создавая на своем пути ионизацию большой плотности (несколько десятков тысяч пар ионов на 1 см пути). Альфа-частицы состоят из двух протонов и двух нейтронов, прочно связанных между собой ядерными силами; имеют незначительный пробег: в воздухе – 2—11 см; в биологических тканях – 30—150 мкм; в алюминии – 10—69 мкм. Энергия альфа-частиц не превышает нескольких МэВ.
Бета-излучение – поток электронов или позитронов, испускаемых атомными ядрами при их бета-распаде. Бета-частицы обладают различной энергией — от нескольких килоэлектронвольт до 3 МэВ. Проникающая способность бета-частиц зависит от энергии частиц. Пробег бета-частиц в воздухе при средних энергиях составляет несколько метров, в тканях человека – около 1 см, в металлах – 1 мм. Скорость бета-частиц в бета-излучении может быть близка к скорости света. Бета-излучение может вызывать ионизацию, люминесценцию, фотохимические реакции. Удельная ионизирующая способность бета-частиц меньше, чем альфа-частиц, но выше, чем гамма-лучей.
Гамма-излучение – электромагнитное (фотонное) излучение с очень короткой длиной волны, менее 0,1 нм, испускаемое атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также возникающее при торможении заряженных частиц, их распаде или взаимодействии частиц. Энергия гамма-лучей измеряется в широких пределах от 0,01 до 20 МэВ. Проникающая способность гамма-лучей зависит от их энергии. Гамма-лучи свободно проходят через тело человека и другие материалы без заметного ослабления. Гамма-лучи распространяются прямолинейно, имеют большой пробег в воздухе и могут создавать вторичное и рассеянное излучение в средах, через которые они проходят.
Рентгеновское излучение – коротковолновое электромагнитное излучение с длиной волны от 10 нм до 1 пм, возникающее в средах, окружающих источник бета-излучения, в рентгеновских трубках, ускорителях электронов, энергия фотонов которых составляет не более 1 МэВ, распространяется со скоростью света. Важнейшим свойством рентгеновского излучения, как и гамма-излучения, является его большая проникающая способность. Возможность проникновения лучей тем больше, чем короче длина волны. Ионизирующее действие рентгеновского излучения значительно: при попадании пучка рентгеновских лучей на вещество возникает вторичное и рассеянное излучение.
Нейтронное излучение – поток не имеющих заряда элементарных частиц с массой, близкой к массе протона. Нейтроны в зависимости от кинетической энергии разделяются на быстрые (с энергией до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Проникающая способность нейтронного излучения зависит от энергии его частиц и состава атомов вещества, с которым они взаимодействуют. В результате такого взаимодействия возможно образование стабильных или радиоактивных изотопов.
