- •Производственная санитария и гигиена труда на железнодорожном транспорте
- •1. Основные характеристики трудового процесса, организация труда и отдыха работников, профессиональный отбор
- •1.1 Основные характеристики трудового процесса
- •1.2. Режим труда и отдыха, оптимальные режимы труда и отдыха
- •1.3. Питьевой режим
- •1.4. Режим питания
- •1.5. Режим сна и бодрствования
- •1.6. Профессиональный отбор на профессию
- •2. Вредные вещества
- •2.1. Вредные вещества и их классификация
- •2.2. Пути поступления, распределения и превращения в организме
- •2.3.Токсическое действие промышленных ядов в зависимости от их
- •2.4. Нормирование содержания вредных веществ в воздухе
- •2.5. Предельно допустимые концентрации (пдк) в воздухе производственных помещений
- •2.6. Заболевания, возникающие от воздействия вредных веществ
- •2.7. Средства коллективной и индивидуальной защиты
- •2.8. Методы измерения содержания вредных веществ
- •2.9. Производственная пыль, пылевая патология и профилактика
- •2.10. Методы определения запылённости воздушной среды
- •3. Метеорологические условия на производстве
- •3.1. Понятие о микроклимате производственного помещения. Основные параметры микроклимата
- •3.2. Влияние параметров микроклимата на здоровье и
- •3.3. Принципы нормирования параметров микроклимата. Зависимость параметров микроклимата от тяжести трудового процесса и климатических условий региона
- •Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин
- •3.4. Основные средства защиты от неблагоприятных факторов и
- •3.5. Методы и приборы контроля параметров микроклимата
- •4. Отопление
- •4.1. Гигиенические основы отопления. Метеорологические условия
- •4.2. Классификация систем отопления
- •4.3. Выбор систем отопления
- •4.4. Выбор и размещение отопительных приборов
- •4.5. Конструктивные элементы и узлы систем водяного отопления
- •4.6. Тепловой баланс помещения
- •4.7. Теплопередача через ограждения
- •4.8. Расчетные параметры климата и расчет теплозащитных
- •4.9. Добавочные теплопотери через ограждения
- •4.10. Правила обмера поверхностей ограждающих конструкций
- •4.11. Тепловой расчет приборов
- •4.12. Принципы гидравлического расчета систем
- •4.13. Принципы работы систем парового отопления
- •4.14. Панельно-лучистое отопление
- •4.15. Виды систем воздушного отопления
- •4.16. Газовое отопление
- •4.17. Электрическое отопление
- •5. Производственная вентиляция
- •5.1. Назначение и классификация вентиляции
- •5.2. Основы расчета вентиляции
- •5.3. Расчет поступлений тепла и влаги в помещение
- •5.4. Поступление в помещение вредных веществ
- •5.5. Естественная вентиляция
- •5.6. Аэрация зданий
- •5.7.Организация воздухообмена в помещении
- •5.8. Приточные системы механической вентиляции. Очистка приточного воздуха. Калориферы. Вентиляторы
- •5.9. Вытяжная местная механическая вентиляция
- •5.10. Вытяжная общеобменная вентиляция
- •5.11. Очистка воздуха от выбросов загрязняющих веществ
- •5.12. Воздушно-тепловые завесы
- •5.13. Расчет механической вентиляции
- •5.14. Увлажнение воздуха. I – d диаграмма
- •5.15. Санитарно-гигиенические основы кондиционирования
- •6. Производственное освещение
- •6.1. Световая среда и здоровье человека
- •6.2. Световое излучение и параметры, характеризующие световую среду
- •6.3 Виды и системы производственного освещения
- •6.4. Естественное освещение
- •6.5. Виды искусственного освещения
- •6.6. Источники света
- •6.7. Осветительные приборы (светильники)
- •6.8. Расчёт светотехнических установок искусственного освещения
- •Группы твердости светотехнических материалов
- •6.9. Особенности и критерии оценки освещения
- •6.10. Классификация и выбор способов освещения
- •6.11. Расчёт светотехнических установок искусственного
- •6.12. Контроль освещения
- •7. Защита от шума, ультразвука и инфразвука
- •7.2. Влияние шума на организм человека
- •7.3. Физические и физиологические характеристики шума
- •7.4. Классификация шумов
- •7.5. Гигиеническое нормирование
- •Пду звука и эквивалентные уровни звука на рабочих местах в дБа
- •7.6. Методы контроля шума на производстве
- •7.7. Методы и средства снижения и устранения вредного
- •7.8. Определение уровней звукового давления в расчетных точках
- •7.9. Звукоизоляция и звукопоглощение
- •7.10. Глушители шума
- •7.11. Ультразвук
- •Предельно допустимые уровни контактного ультразвука для работающих
- •7.12. Инфразвук
- •7.13. Требования к шумовым характеристикам машин
- •8. Защита от Вибрации
- •8.1. Основные характеристики вибрации
- •8.2. Классификация вибраций, воздействующих на человека
- •8.3. Действия вибрации на организм человека.
- •8.4. Нормирование вибрации
- •8.5. Измерение вибрации
- •8.6. Расчет амортизаторов
- •8.7. Контроль вибрационных характеристик машин
- •8.8. Защита от вибрации
- •9. Защита от электромагнитных полей
- •9.1. Источники электромагнитных полей и их характеристики
- •9.2. Воздействие электромагнитных полей на человека
- •9.3. Нормирование электромагнитных полей
- •Предельно допустимые уровни магнитных полей частотой 50 Гц
- •9.4. Мероприятия по защите от электромагнитных полей
- •9.5. Методы контроля напряженностей электрической и магнитной составляющих эмп
- •9.6. Электромагнитная безопасность при эксплуатации
- •10. Защита от ионизирующих излучений
- •10.1. Виды ионизирующих излучений
- •10.2. Источники ионизирующих излучений
- •10.3. Параметры ионизирующих излучений и единицы
- •10.4. Биологическое действие на человека и окружающую среду
- •10.5. Нормирование параметров ионизирующих излучений.
- •10.6. Организация работы с радиоактивными веществами и
- •10.7. Методы защиты организма человека от ионизирующих
- •10.8. Ликвидация и утилизация радиоактивных отходов
- •10.9. Методы дозиметрического контроля, приборы и средства
- •11. Защита от лазерных излучений
- •11.1. Природа, особенности и источники лазерного излучения
- •11.2. Классификация лазеров. Вредные и опасные факторы
- •11.3. Воздействие лазерных излучений на человека
- •11.4. Нормирование лазерных излучений
- •11.5. Мероприятия по защите от лазерных излучений
- •11.6. Контроль лазерных излучений
- •12. Средства индивидуальной защиты
- •12.1. Роль средств индивидуальной защиты в профилактике
- •12.2. Классификация средств индивидуальной защиты
- •12.3. Отдельные виды сиз
- •12.4. Обеспечение работающих средствами индивидуальной
- •13. Личная гигиена, Медико-санитарное обслуживание
- •13.1. Личная гигиена на производстве
- •13.2. Медико-санитарное обслуживание работников
- •14. Санитарно-гигиеничские требования
- •14.1. Санитарно-гигиенические требования к территории и планировке предприятия
- •14.2. Санитарно-гигиенические требования к производственным,
- •14.3. Санитарно-гигиенические требования к организации
- •Перечень приборов, аппаратуры и устройств для контроля факторов производственной среды
- •1. Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •2. Неионизирующие электромагнитные поля и излучения
- •3. Шум, ультразвук, вибрация
- •4. Тепловые излучения и микроклимат
- •Тепловые излучения и микроклимат
- •5. Химический фактор
- •6. Световая среда
- •7. Лазерное излучение
- •8.Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Нормируемые показатели освещения основных помещений общественных, жилых, вспомогательных зданий (из сНиП 23-05-95)
- •Лицевая сторона личной карточки личная карточка №__________
- •Оборотная сторона личной карточки
5.4. Поступление в помещение вредных веществ
Выделение углекислого газа СО2 людьми зависит от интенсивности выполняемой ими работы и может быть определено по табл. 5.9.
Таблица 5.9
Выделение углекислого газа людьми
Возраст людей и характер выполняемой работы |
Объемный расход СО2, л/ч |
Массовый расход СО2, г/ч |
Взрослые люди при выполнении работы: умственной (или в состоянии покоя) легкой физической тяжелой Дети до 12 лет |
23 30 45 12 |
45 60 90 24 |
Для определения количества выделяющихся паров, газов и аэрозолей от оборудования, работающего под давлением, в справочной литературе приводятся формулы, в которых учитываются технологические и конструктивные параметры оборудования. Однако на практике используются чаще всего результаты испытаний оборудования, которым оно регулярно подвергается, или данные практических замеров.
Для оборудования, работающего под некоторым разрежением, в том числе и для укрытий с отсосами, применяют следующие расчетные зависимости:
,
г/с , (5.16)
где f – суммарная площадь неплотностей, м2; Сo – концентрация вредного газа в оборудовании, г/м3 ; V – скорость движения воздуха в неплотностях, м/с; D – коэффициент диффузии газа в воздухе, м2/с; l – средняя длина каналов (отверстий, неплотностей), м.
В паспорте оборудования, среда в котором находится под разрежением, должна указываться величина
,
, (5.17)
где Gи – количество вредного вещества, выделяемого оборудованием при испытаниях, г/с; Pи – разрежение в оборудовании при испытаниях, кг/м2; Cо.и – концентрация газов в оборудовании во время испытаний, г/м3; Dи – коэффициент диффузии газов в период испытаний, м2/с.
Тогда количество вредного вещества, которое может выделиться из оборудования во время эксплуатации при разрежении Pэ в оборудовании:
,
г/с, (5.18)
где Kз – коэффициент запаса; Pэ – разрежение в оборудовании при эксплуатации, кг/м2.
5.5. Естественная вентиляция
Естественная вентиляция помещений происходит за счет воздействия ветра и гравитации. При естественной вентиляции воздух может поступать в помещение и удаляться из него через специально предусмотренные проемы, а также через неплотности в наружных ограждениях здания, а также через специальные каналы.
Вытяжная естественная канальная вентиляция осуществляется преимущественно в жилых, общественных и административно-бытовых зданиях для помещений, не требующих воздухообмена больше однократного.
Системы вытяжной вентиляции с естественным побуждением для жилых, общественных и административно-бытовых зданий рассчитывают на разность удельных весов наружного воздуха температурой 5 °C и внутреннего воздуха с температурой для холодного периода года. Считается, что при более высоких наружных температурах, когда естественное давление становится весьма незначительным, дополнительный воздухообмен можно получать, открывая более часто и на более продолжительное время форточки, фрамуги, а иногда створки оконных рам.
В производственных зданиях естественную вентиляцию следует проектировать, если она обеспечит нормируемые условия воздушной среды в помещениях и если она допустима по технологическим требованиям.
Системы вентиляции с естественным побуждением для производственных помещений рассчитывают:
а) на разность удельных весов наружного и внутреннего воздуха по расчетным параметрам переходного периода года для всех отапливаемых помещений, а для помещений с избытками теплоты — по расчетным параметрам теплого периода года;
б) на действие ветра скоростью 1 м/с в теплый период года для помещений без избытка теплоты.
Вытяжная естественная канальная вентиляция, рис. 5.4, состоит из вертикальных внутристенных или приставных каналов с отверстиями, закрытыми жалюзийными решетками, сборных горизонтальных воздуховодов и вытяжной шахты.
Рис. 5.4. Схема естественной вытяжной канальной вентиляции
Для усиления вытяжки воздуха из помещений вверху на шахте часто устанавливают специальную насадку – дефлектор. Загрязненный воздух из помещений поступает через жалюзийную решетку в канал, поднимается вверх, достигая сборных воздуховодов, и оттуда выходит через шахту в атмосферу. Для устройства канальной вентиляции изготавливают специальные вентиляционные панели или блоки с каналами круглого, прямоугольного или овального сечения. Наиболее рациональной формой сечения канала и воздуховода следует считать круглую, так как по сравнению с другими формами она при той же площади имеет меньший периметр, а, следовательно, и меньшую величину сопротивления трению при движении воздуха. Вентиляционные каналы естественной вентиляции в гражданских и административно-бытовых зданиях, как правило, прокладываются в толще стен, могут выполняться в виде вентиляционных блоков, быть приставными или подшивными в зависимости от конструктивного оформления здания и внутренней отделки помещений.
В канальных системах естественной вытяжной вентиляции воздух перемещается в каналах и воздуховодах под действием естественного давления, возникающего вследствие разности температур холодного наружного и теплого внутреннего воздуха.
Естественное давление ΔРе определяют по формуле
ΔРе = hi·g·(ρн – ρв) , Па, (5.19)
где hi – высота воздушного столба, м; g = 9,81 м/с2 – ускорение свободного падения; ρн – плотность наружного воздуха при температуре, зависящей от назначения помещения, кг/м3; ρв – плотность внутреннего воздуха, кг/м3.
Высоту воздушного столба hi следует принимать:
- для вытяжных воздуховодов при наличии в помещении только вытяжки – от середины вытяжного отверстия до устья вытяжной шахты; при наличии в помещении притока – от середины высоты помещения до устья вытяжной шахты;
- для приточных воздуховодов – от середины высоты приточной камеры до середины высоты помещения.
Плотность воздуха определяют по таблицам из справочной литературы или по формуле:
, кг/м3,
(5.20)
где t – температура воздуха, °С.
Анализируя выражение (5.19), можно сделать следующие практические выводы.
1. При естественной вентиляции верхние этажи здания по сравнению с нижними этажами находятся в менее благоприятных условиях, так как располагаемое давление здесь меньше.
2. Естественное давление становится большим при низкой температуре наружного воздуха и заметно уменьшается в теплое время года.
Кроме того, естественное давление не зависит от длины горизонтальных воздуховодов, тогда как для преодоления сопротивлений в коротких ветвях воздуховодов требуется меньшее давление, чем в ветвях значительной протяженности. Радиус действия вытяжных систем – от оси вытяжной шахты до оси наиболее удаленного отверстия – рекомендуется принимать не более 8 м.
Площадь F, м2, и размеры поперечного сечения каналов a и b, м, определяют по скорости воздуха в каналах, Vк , м/с, и расходу воздуха в канале, Lп , м3/с:
F
= a
b
=
, м2.
(5.21)
Затем производят расчет потерь давления при прохождении воздуха по каналу. Для естественной вентиляции скорость воздуха в каналах принимают не более 1,5—2 м/с. Если при расчете вентиляционной сети получается, что потери давления при перемещении воздуха ΔPпот = 0,9 ΔPе , расчет заканчивают, в противном случае производят перерасчет сети или отдельных ее участков, изменяя сечение каналов. Для возможности использования расчетных таблиц сопротивления воздуховодов, выполненных для воздуховодов круглого сечения, при квадратном или прямоугольном сечении определяют так называемый гидравлический диаметр:
dг
=
, м, (5.22)
где a и b – поперечные размеры прямоугольного канала, м.
Суммарные потери давления ΔPc в сети состоят из потерь на преодоление местных сопротивлений и на преодоление трения воздуха о стенки воздуховодов, их определяют по формуле:
, Па,
(5.23)
где – коэффициенты местных сопротивлений; Vк – скорость воздуха в каналах, м/с; ρ – плотность воздуха, кг/м3; R – потери давления на трение на расчетном участке сети, Па/м (на 1 м длины воздуховода); l – длина участков воздуховода (канала), м.
Дефлекторы применяют для увеличения располагаемого давления. Дефлекторами называются специальные насадки, устанавливаемые на концах труб или шахт, а также непосредственно над вытяжными отверстиями в крышах производственных зданий. Назначение дефлектора – усилить вытяжку загрязненного воздуха из различных помещений. Работа дефлектора основана на использовании энергии потока воздуха – ветра, который, ударяясь о поверхность дефлектора и обтекая его, создает возле большей части его периметра разрежение, что и усиливает вытяжку воздуха из помещений.
Дефлекторы изготовляют различных конструкций и размеров. Наиболее распространены дефлекторы ЦАГИ круглой (рис. 5.5) и квадратной форм.
Рис. 5.5. Дефлектор ЦАГИ:
1 – патрубок; 2 – диффузор; 3 – корпус дефлектора; 4 – лапки для крепления зонта-колпака; 5 – зонт-колпак
Размеры отдельных элементов дефлектора указаны в долях диаметра его патрубка. Номер дефлектора соответствует диаметру патрубка в дециметрах. Дефлектор ЦАГИ квадратной формы состоит в основном из тех же элементов, что и круглый.
Разрежение, создаваемое дефлектором, зависит от скорости ветра Vв. Скорость ветра, Vв, определяют по СНиП 23-01-99. Скорость движения воздуха в патрубке дефлектора составляет приблизительно 0,2—0,4 скорости движения ветра, т. е.
Vд = (0,2—0,4)·Vв , м/с. (5.24)
Разрежение, создаваемое дефлектором, определяют по формуле:
Pд
=
, Па, (5.25)
где
– принимают по графику на рис. 5.6 или
паспорту на дефлектор в зависимости от
принятого соотношения
.
Рис. 5.6. График для определения разрежения, создаваемого дефлектором, и количества удаляемого воздуха:
1 – при круглом сечении; 2 - при квадратном сечении
Дефлекторы рекомендуется устанавливать в наиболее высоких точках здания, непосредственно обдуваемых ветром. Нельзя ставить дефлекторы в зоне подпора ветра, например перед стеной, на которую направлен ветер, вблизи выступающих брандмауэров и т. п., так как в этих условиях возможно опрокидывание тяги, т. е. задувание наружного воздуха внутрь помещения. Не следует также устанавливать дефлекторы между высокими зданиями (в аэродинамической тени).
Жалюзийные решетки устанавливают в местах забора или раздачи воздуха в приточных и вытяжных системах для регулирования количества воздуха, поступающего или удаляемого через отверстия. Наиболее широко применяют жалюзийные решетки с подвижными перьями жалюзи, стандартные размеры их приведены в справочниках и типовых чертежах, выпускаемых Госстроем России. С помощью шнура или троса решетка может быть полностью открыта, полностью или частично закрыта. В газифицированных помещениях устанавливают нерегулируемые решетки.
При повышенных требованиях к внутренней отделке помещений решетки изготавливают из металла, пластика, гипса и придают им разнообразную форму и рисунок. Однако гидравлическое сопротивление этих решеток, а также площадь их живого сечения (живое сечение – суммарная площадь отверстий для прохода воздуха в решетке) должны быть такими же, как и у стандартной решетки. Площадь живого сечения решеток определяют по формуле
Fж.с. = L / V , м2 , (5.26)
где L – объем воздуха, проходящего через решетку, м3/с; V – скорость воздуха в живом сечении жалюзийной решетки, м/с.
Вытяжка из помещений регулируется жалюзийными решетками в вытяжных отверстиях, а также дроссель-клапанами или задвижками, устанавливаемыми в сборном воздуховоде и в шахте.
