- •Производственная санитария и гигиена труда на железнодорожном транспорте
- •1. Основные характеристики трудового процесса, организация труда и отдыха работников, профессиональный отбор
- •1.1 Основные характеристики трудового процесса
- •1.2. Режим труда и отдыха, оптимальные режимы труда и отдыха
- •1.3. Питьевой режим
- •1.4. Режим питания
- •1.5. Режим сна и бодрствования
- •1.6. Профессиональный отбор на профессию
- •2. Вредные вещества
- •2.1. Вредные вещества и их классификация
- •2.2. Пути поступления, распределения и превращения в организме
- •2.3.Токсическое действие промышленных ядов в зависимости от их
- •2.4. Нормирование содержания вредных веществ в воздухе
- •2.5. Предельно допустимые концентрации (пдк) в воздухе производственных помещений
- •2.6. Заболевания, возникающие от воздействия вредных веществ
- •2.7. Средства коллективной и индивидуальной защиты
- •2.8. Методы измерения содержания вредных веществ
- •2.9. Производственная пыль, пылевая патология и профилактика
- •2.10. Методы определения запылённости воздушной среды
- •3. Метеорологические условия на производстве
- •3.1. Понятие о микроклимате производственного помещения. Основные параметры микроклимата
- •3.2. Влияние параметров микроклимата на здоровье и
- •3.3. Принципы нормирования параметров микроклимата. Зависимость параметров микроклимата от тяжести трудового процесса и климатических условий региона
- •Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин
- •3.4. Основные средства защиты от неблагоприятных факторов и
- •3.5. Методы и приборы контроля параметров микроклимата
- •4. Отопление
- •4.1. Гигиенические основы отопления. Метеорологические условия
- •4.2. Классификация систем отопления
- •4.3. Выбор систем отопления
- •4.4. Выбор и размещение отопительных приборов
- •4.5. Конструктивные элементы и узлы систем водяного отопления
- •4.6. Тепловой баланс помещения
- •4.7. Теплопередача через ограждения
- •4.8. Расчетные параметры климата и расчет теплозащитных
- •4.9. Добавочные теплопотери через ограждения
- •4.10. Правила обмера поверхностей ограждающих конструкций
- •4.11. Тепловой расчет приборов
- •4.12. Принципы гидравлического расчета систем
- •4.13. Принципы работы систем парового отопления
- •4.14. Панельно-лучистое отопление
- •4.15. Виды систем воздушного отопления
- •4.16. Газовое отопление
- •4.17. Электрическое отопление
- •5. Производственная вентиляция
- •5.1. Назначение и классификация вентиляции
- •5.2. Основы расчета вентиляции
- •5.3. Расчет поступлений тепла и влаги в помещение
- •5.4. Поступление в помещение вредных веществ
- •5.5. Естественная вентиляция
- •5.6. Аэрация зданий
- •5.7.Организация воздухообмена в помещении
- •5.8. Приточные системы механической вентиляции. Очистка приточного воздуха. Калориферы. Вентиляторы
- •5.9. Вытяжная местная механическая вентиляция
- •5.10. Вытяжная общеобменная вентиляция
- •5.11. Очистка воздуха от выбросов загрязняющих веществ
- •5.12. Воздушно-тепловые завесы
- •5.13. Расчет механической вентиляции
- •5.14. Увлажнение воздуха. I – d диаграмма
- •5.15. Санитарно-гигиенические основы кондиционирования
- •6. Производственное освещение
- •6.1. Световая среда и здоровье человека
- •6.2. Световое излучение и параметры, характеризующие световую среду
- •6.3 Виды и системы производственного освещения
- •6.4. Естественное освещение
- •6.5. Виды искусственного освещения
- •6.6. Источники света
- •6.7. Осветительные приборы (светильники)
- •6.8. Расчёт светотехнических установок искусственного освещения
- •Группы твердости светотехнических материалов
- •6.9. Особенности и критерии оценки освещения
- •6.10. Классификация и выбор способов освещения
- •6.11. Расчёт светотехнических установок искусственного
- •6.12. Контроль освещения
- •7. Защита от шума, ультразвука и инфразвука
- •7.2. Влияние шума на организм человека
- •7.3. Физические и физиологические характеристики шума
- •7.4. Классификация шумов
- •7.5. Гигиеническое нормирование
- •Пду звука и эквивалентные уровни звука на рабочих местах в дБа
- •7.6. Методы контроля шума на производстве
- •7.7. Методы и средства снижения и устранения вредного
- •7.8. Определение уровней звукового давления в расчетных точках
- •7.9. Звукоизоляция и звукопоглощение
- •7.10. Глушители шума
- •7.11. Ультразвук
- •Предельно допустимые уровни контактного ультразвука для работающих
- •7.12. Инфразвук
- •7.13. Требования к шумовым характеристикам машин
- •8. Защита от Вибрации
- •8.1. Основные характеристики вибрации
- •8.2. Классификация вибраций, воздействующих на человека
- •8.3. Действия вибрации на организм человека.
- •8.4. Нормирование вибрации
- •8.5. Измерение вибрации
- •8.6. Расчет амортизаторов
- •8.7. Контроль вибрационных характеристик машин
- •8.8. Защита от вибрации
- •9. Защита от электромагнитных полей
- •9.1. Источники электромагнитных полей и их характеристики
- •9.2. Воздействие электромагнитных полей на человека
- •9.3. Нормирование электромагнитных полей
- •Предельно допустимые уровни магнитных полей частотой 50 Гц
- •9.4. Мероприятия по защите от электромагнитных полей
- •9.5. Методы контроля напряженностей электрической и магнитной составляющих эмп
- •9.6. Электромагнитная безопасность при эксплуатации
- •10. Защита от ионизирующих излучений
- •10.1. Виды ионизирующих излучений
- •10.2. Источники ионизирующих излучений
- •10.3. Параметры ионизирующих излучений и единицы
- •10.4. Биологическое действие на человека и окружающую среду
- •10.5. Нормирование параметров ионизирующих излучений.
- •10.6. Организация работы с радиоактивными веществами и
- •10.7. Методы защиты организма человека от ионизирующих
- •10.8. Ликвидация и утилизация радиоактивных отходов
- •10.9. Методы дозиметрического контроля, приборы и средства
- •11. Защита от лазерных излучений
- •11.1. Природа, особенности и источники лазерного излучения
- •11.2. Классификация лазеров. Вредные и опасные факторы
- •11.3. Воздействие лазерных излучений на человека
- •11.4. Нормирование лазерных излучений
- •11.5. Мероприятия по защите от лазерных излучений
- •11.6. Контроль лазерных излучений
- •12. Средства индивидуальной защиты
- •12.1. Роль средств индивидуальной защиты в профилактике
- •12.2. Классификация средств индивидуальной защиты
- •12.3. Отдельные виды сиз
- •12.4. Обеспечение работающих средствами индивидуальной
- •13. Личная гигиена, Медико-санитарное обслуживание
- •13.1. Личная гигиена на производстве
- •13.2. Медико-санитарное обслуживание работников
- •14. Санитарно-гигиеничские требования
- •14.1. Санитарно-гигиенические требования к территории и планировке предприятия
- •14.2. Санитарно-гигиенические требования к производственным,
- •14.3. Санитарно-гигиенические требования к организации
- •Перечень приборов, аппаратуры и устройств для контроля факторов производственной среды
- •1. Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •Аэрозоли преимущественно фиброгенного действия
- •2. Неионизирующие электромагнитные поля и излучения
- •3. Шум, ультразвук, вибрация
- •4. Тепловые излучения и микроклимат
- •Тепловые излучения и микроклимат
- •5. Химический фактор
- •6. Световая среда
- •7. Лазерное излучение
- •8.Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Ионизирующие излучения
- •Нормируемые показатели освещения основных помещений общественных, жилых, вспомогательных зданий (из сНиП 23-05-95)
- •Лицевая сторона личной карточки личная карточка №__________
- •Оборотная сторона личной карточки
2.8. Методы измерения содержания вредных веществ
в воздухе рабочей зоны
Для измерения содержания вредных веществ в воздухе рабочей зоны применяются различные методы: индикаторные (экспрессные), лабораторные, инструментальные.
Индикаторные (экспрессные) методы позволяют сравнительно быстро произвести анализ непосредственно в производственных условиях.
Индикаторные методы довольно просты, с их помощью можно быстро определить содержание различных веществ в воздухе. Так, например, бумажка, пропитанная уксуснокислым свинцом, чернеет в присутствии следов сероводорода; бумажка, пропитанная парадиметиламинобензальдегидом (бумажка Прокофьева), краснеет в присутствии следов фосгена и т.д. Индикаторные методы применяются, когда нежелательно присутствие токсичных веществ даже в очень малых концентрациях, а при их наличии требуются особые срочные меры (пуск аварийной вентиляции, нейтрализация загазованного участка, применение средств индивидуальной защиты и др.).
На практике для проведения экспрессных методов химического анализа широко используются переносные универсальные газоанализаторы, к которым прилагаются наборы индикаторных трубок, реактивная бумага, специальные растворы со стандартными шкалами.
Выпускаются трубки индикаторные (далее – ТИ) колористические, колориметрические и экспозиционные, которые предназначены для измерения содержания вредных веществ и кислорода при контроле:
- загрязнения воздуха рабочей зоны на уровне предельно допустимых концентраций (ПДК);
- загрязнения воздушной среды при аварийных ситуациях при значительном превышении ПДК для воздуха рабочей зоны;
- промышленных выбросов топливопотребляющих установок малой мощности, работающих на природном газе;
- промышленных выбросов химических производств;
- содержания газов и паров в воздушной среде в статическом режиме;
- наличия вредных газов и паров в воздушной среде.
Сущность метода заключается в изменении окраски индикаторного порошка в результате реакции с вредным веществом (газом или паром) в анализируемом воздухе, просасываемом через трубку. Измерение концентрации вредного вещества производится по длине изменившего первоначальную окраску слоя индикаторного порошка в трубке (линейно-колористическая индикаторная трубка) с помощью шкалы, нанесенной на индикаторную трубку, кассету или специальную этикетку, или по его интенсивности (колориметрическая индикаторная трубка).
ТИ могут быть применены для предварительной оценки качества воздуха и других газовых сред, связанной с защитой здоровья населения, и охраной окружающей среды. ТИ предназначены для комплектования химических газоопределителей типа ГХ (ГХ-ВРЗ и ГХ-ПВ), которые используются при количественном определении химического состава воздушных сред с применением прокачивающих устройств типа аспираторов сильфонных АМ-5 (ТУ 12.43.01.166-80), АМ-0059 (ТУ РЮАЖ.413543.010) или УГ-2.
ТИ экспозиционные предназначены для работы в статическом режиме (без прокачивающего устройства).
Существуют ТИ для определения различных концентраций наиболее распространенных газообразных примесей, содержащихся в воздухе.
Измерения ТИ концентраций вредных веществ в воздухе рабочей зоны проводят при следующих условиях:
- барометрическое давление – от 90 до 104 кПа (680-780 мм рт.ст);
- температура окружающей среды от 15 до 30°С;
- относительная влажность окружающей среды от 30 до 80%.
Транспортировка и хранение ТИ может производиться при следующих условиях:
- температура окружающей среды от минус 50 до 50°С;
- относительная влажность окружающей среды от 30 до 95%.
ТИ можно использовать в присутствии неизмеряемых примесей.
Габаритные размеры ТИ:
- длина от 100 до 210 мм;
- наружный диаметр от 3,7 до 8,0 мм.
Масса 10 штук ТИ от 0,020 до 0,180 кг.
Лабораторные методы дают возможность точно определить микроколичества токсичных веществ в воздухе. Однако они требуют много времени и применяются главным образом в исследовательских и контрольных работах.
На практике применяют разнообразные санитарно-химические методы: фотометрические, колориметрические, хроматографические, электрохимические, люминесцентные, спектроскопические. Для анализа используют приборы различной конструкции: фотоколориметры (ФЭК-М-56, ФЭК-Н-57), спектрофотометры (СФ-56, СФ-66), хроматографы (газовые хроматографы ФГХ-1, портативный и модели 500М, жидкостной хроматограф «Миллихром-4»), полярографы.
Наиболее совершенными являются инструментальные методы контроля загазованности воздушной среды, выполняемые с помощью газоанализаторов и газосигнализаторов, принцип действия которых основан на фотоколориметрическом, термохимическом, ионизационном, эмиссионном, кулонометрическом и других способах анализа.
Различают автоматические газоанализаторы и газоанализаторы периодического действия.
Автоматические газоанализаторы осуществляют обычно непрерывную регистрацию уровня загазованности на бумаге.
Газосигнализаторы настраиваются на определенный уровень загазованности (ПДК, взрывоопасное содержание газа и др.), при достижении которого они дают световой или звуковой сигнал (например, газоанализатор «Палладий-3» – световая, звуковая и электрическая сигнализация превышения ПДК окиси углерода – СО).
Достаточно много используется приборов, рассчитанных на определение различных химических веществ. К ним, в частности, относятся газоанализаторы АНКАТ 7601 (микроконцентрации озона), восемь модификаций 7656 (инспекционный контроль содержания СО, NО2, SО2, Н2S), 7671 (контроль содержания хлора).
Для измерения концентраций горючих газов и паров и их смесей (93 наименования) в воздухе и выдачи сигналов в диапазоне сигнальных концентраций могут быть использованы сигнализаторы термохимические (СТХ).
В основе работы сигнализаторов использован термический метод измерения, заключающийся в определении теплового эффекта сгорания горючих газов, паров и их смесей на каталитически активном чувствительном элементе. Диапазон сигнальных концентраций 5—50% от концентраций, соответствующих нижнему пределу воспламенения.
Перечень приборов, аппаратуры и устройств для определения и контроля химических веществ, присутствующих в воздухе рабочей зоны, приведен в приложении 1.
