- •1.2 Морфология и систематика микроорганизмов
- •1.3.Формы и размеры микроорганизмов
- •Структура бактериальной клетки
- •Размножение бактерий
- •Принципы систематики и классификации микроорганизмов
- •4.Микроорганизмы, отличающиеся от истинных бактерий.
- •Любопытные факты
- •Рост и развитие дрожжей.
- •Жизненные формы дрожжей
- •Морфология дрожжей
- •8. Дрожжи - возбудители заболеваний человека
- •9. Промышленное использование дрожжей
- •Традиционные процессы
- •Микробиология тары и упаковочных материалов
- •Микрофлора тела человека Микробиология молока и молочных продуктов
- •Микробиология мяса и колбасных изделий
- •1. Микрофлора свежей рыбы
- •1.1 Изменение микрофлоры рыбы во время ее хранения
- •1.2 Микробиология замороженной рыбы
- •1.3 Соленая рыба
- •1.5 Копченая рыба
- •1.6 Консервированная рыба
- •Гигиенические требования безопасности консервированных пищевых продуктов по СанПин 2.3.2.1078-01
- •Микробиологические пороки муки
- •Микробиологические пороки хлеба и макарон
- •Защита зерна и его продуктов при хранении от активного воздействия микроорганизмов
- •Профилактические меры предупреждения развития микроорганизмов:
- •2. Мероприятия, направленные на ликвидацию развивающихся микробиологических процессов
- •Микроорганизмы, вызывающие появление ядовитых свойств у зерна и кормов
- •12.Микробиология свежих плодов и овощей
1.1 Предмет и задачи микробиологии. Основные свойства микроорганизмов
Микробиология (от греч. «mikros» – малый, «bios» – жизнь, «logos» – учение) – наука, изучающая мир мельчайших живых существ – микроорганизмов и процессы, вызываемые микроорганизмами.
Микробиология изучает морфологию микроорганизмов, закономерности их развития и процессы, которые они вызывают в среде обитания, а также их роль в природе и хозяйственной деятельности человека.
К миру микроорганизмов относятся бактерии, дрожжи, микроскопические (плесневые) грибы. Микроорганизмы обитают во всех климатических зонах, находятся на всех предметах и продуктах, живут в организме человека. Они разлагают остатки отмерших животных и растительных тканей, выполняя роль санитаров планеты. С жизнедеятельностью микроорганизмов связаны образование полезных ископаемых, плодородие почвы, самоочищение водоемов и т.д. Полезные свойства микроорганизмов используются в технологии производства многих пищевых продуктов и различных биологически активных веществ, таких как ферменты, аминокислоты, витамины, антибиотики и др.
Однако не все микроорганизмы приносят пользу. Многие микроорганизмы являются вредителями пищевых производств и вызывают порчу пищевых продуктов и сельскохозяйственного сырья. Некоторые микроорганизмы, развиваясь и размножаясь в пищевых продуктах, образуют токсины и вызывают пищевые отравления.
На современном этапе развития народного хозяйства страны, в условиях научно-технического прогресса, еще в большей степени возрастает роль микробиологической науки. Микробиология дифференцирована на ряд самостоятельных дисциплин: общую, медицинскую, сельскохозяйственную, ветеринарную и техническую (промышленную) . Одним из разделов технической микробиологии является пищевая микробиология, которую мы будем рассматривать.
Без знания микрофлоры пищевых продуктов, специфических свойств микроорганизмов, их биохимической деятельности, зависимости от окружающей среды нельзя успешно выполнять задачи, поставленные перед наукой и практикой в области контроля качества, производства, хранения, реализации пищевых продуктов и максимального сокращения их потерь.
Среди микроорганизмов имеется особая группа – патогенные (болезнетворные) микробы, которые, попадая в организм человека через пищевые продукты, способны вызвать пищевые инфекционные заболевания (алиментарные инфекции). Особую группу ультрамикроскопических структур, не имеющих клеточного строения и отличающихся по химическому составу от всех микроорганизмов, представляют собой вирусы и бактериофаги. Положение вирусов и фагов в системе живых организмов до сих пор остается неясным. Вирусы являются внутриклеточными паразитами клеток и вызывают разнообразные болезни человека, животных и растений. Бактериофаги паразитируют в клетках бактерий и вызывают их лизис, нанося огромный вред при производстве пищевых продуктов и биологически ценных веществ, основанных на жизнедеятельности полезной микрофлоры (например, при производстве кисломолочных продуктов, антибиотиков, бактериальных ферментов и т.д.).
Ø Высокая скорость обменных процессов. Это связано с большим отношением поверхности обмена к объему клетки. Для микроорганизмов вся поверхность клетки является поверхностью обмена. Так как клетки бактерий самые мелкие, то они растут и развиваются быстрее всех микроорганизмов, за ними следуют дрожжи и грибы. В свою очередь, скорость обменных процессов у микроорганизмов в десятки и сотни тысяч раз выше, чем у животных. Например, в организме одного быка весом в 500 кг за 24 часа образуется примерно 0,5 кг белка; за это же время 500 кг дрожжей могут синтезировать более 50 000 кг белка;
Ø широкое распространение в природе. Малые размеры микроорганизмов имеют значение для экологии. Микроорганизмы могут распространяться с воздушными потоками и существуют повсюду;
Ø пластичность обмена – высокая способность к адаптации (приспособлению к новым условиям существования). Несравненно большая гибкость обменных процессов у микроорганизмов по сравнению с растениями и животными объясняется их способностью синтезировать индуцибельные ферменты, т.е. ферменты, которые образуются в клетке только при наличии в среде соответствующих веществ;
Ø высокая степень изменчивости. Более высокая степень изменчивости микроорганизмов по сравнению с макроорганизмами связана с тем, что большинство микроорганизмов являются одноклеточными организмами. На отдельную клетку воздействовать легче, чем на организм, состоящий из множества клеток. Высокая степень изменчивости, быстрый рост и развитие, высокая скорость обменных процессов, образование многочисленного потомства – все эти свойства микроорганизмов делают их чрезвычайно удобными объектами для генетического анализа, так как опыты можно проводить в короткие сроки на огромном числе особей.
Задачи микробиологии пищевых производств:
1. Знание свойств микроорганизмов позволяет своевременно принимать меры, направленные на предотвращение роста и развития микроорганизмов при производстве, транспортировании пищевых продуктов. Это создает предпосылки для повышения биологической стойкости пищевой продукции в процессе хранения.
2. Выделение чистых культур из различных объектов окружающей среды, их селекция, получение высокопродуктивных мутагенных штаммов, оптимизация основных параметров культивирования микроорганизмов позволяют интенсифицировать технологические процессы, основанные на жизнедеятельности полезной микрофлоры. В свою очередь, повышение активности технически полезных микроорганизмов способствует подавлению вредной микрофлоры и улучшению качества пищевых продуктов.
3. Одной из основных задач микробиологии пищевых производств является обеспечение выпуска продуктов питания, безопасных для здоровья потребителей. Для этого необходимо знать микробиологические критерии безопасности различных групп пищевых продуктов и уметь проводить микробиологический контроль в соответствии с санитарно-эпидемиологическими правилами и нормативами.
4. Благодаря изучению свойств микроорганизмов стало возможным создание технологических процессов, которые либо совсем не дают отходов (безотходные технологии), либо в основе которых лежат замкнутые циклы, когда все отходы полностью перерабатываются или используются на последующих стадиях производства. Таким образом, с помощью микробиологии успешно решаются вопросы, связанные с охраной окружающей среды.
1.2 Морфология и систематика микроорганизмов
Общими свойствами микроорганизмов являются:
Ø малые размеры (размеры микроорганизмов измеряются в мкм, 1 мкм = 1-6 м);
В микробиологии пользуются единицей измерения является-микрон, 1 мкм= 10-3мм. Детали структуры микроорганизмов измеряют в нанометрах (1нм= 10-3 мкм = 10-6мм
Бактериальный организм состоит из одной клетки, которая обладает определенным строением, свойствами и функциями. В зависимости от строения клетки, или ее организации, существует два основных типа клеток — эукариотные и прокариотные.
Эукариоты — это микроорганизмы с истинным ядром (от греч. эу—истинный, карио—ядро); к ним относят грибы, водоросли и простейшие микроорганизмы. Клетки эукариот содержат ряд органелл (ядро, пластиды), которые аналогичны соответствующим орга-неллам клеток высших растений. В этом проявляется сходство строения одноклеточных организмов с клетками высших растений.
Прокариоты — микроорганизмы, имеющие примитивный ядерный аппарат и не содержащие митохондрий и хлоропластов. К ним относят бактерии и синезеленые водоросли, или цианобактерии, как их теперь принято называть. Таким образом, прокариотная и эукариотная организации клеток принципиально различны. Ниже рассматривается строение прокариотной (бактериальной) клетки (рис. 39).
1.3.Формы и размеры микроорганизмов
Остановимся вначале на внешних морфологических признаках бактериальной клетки. Форма ее может быть очень разнообразной:
шаровидной или кокковидной (сферической), палочковидной или цилиндрической, извитой, ветвистой, нитчатой.
Кокковидные бактерии (от греч. коккус — ягода) имеют правильную форму шара, но иногда под влиянием различных факторов внешней среды принимают овальные, эллиптические формы. В зависимости от расположения клеток после деления кокки подразделяют на несколько групп: монококки (от греч. монос — один) существуют отдельными шариками, располагающимися поодиночке после деления клетки (Micrococcus agilis); диплококки (от греч. дипло — двойной) располагаются парами, и деление их клеток происходит в одной плоскости, как у монококков (Azotobatcer chroococcum); стрептококки (от греч. стрепто — цепь), деление которых происходит также в одной плоскости, но клетки не отделяются друг от друга и образуются цепочки разной длины (Streptococcus lactis); сарцины (от греч. сарцио — соединяю), образующие скопления кубической формы.
Деление кокков может происходить в трех взаимно перпендикулярных плоскостях (Sarcina flava): с образованием скоплений, напоминающих , гроздья винограда — стафилококки (от греч. стафиле—гроздь); неправильно в нескольких плоскостях, как у многих болезнетворных бактерий; тетракокки (от греч. тетра — четыре) образуются из четырех клеток вследствие последовательных делений в двух взаимно перпендикулярных плоскостях.
Шаровидная форма иногда приближается к овальной, представляя как бы переход к следующей форме — палочке, и называется тогда кокковидная палочка.
2.Палочковидные формы бактерий делят на две группы: бактерии и бациллы. Бациллы (Bacillus или сокращенно Вас.) образуют споры, придающие устойчивость клетке при воздействии неблагоприятных условий. Такие формы легко переносят высушивание, низкие и высокие температуры, облучение и т. д. Палочковидные формы бактерий бывают: тонкие и длинные, толстые с обрубленными концами (палочка сибирской язвы), с заостренными концами веретенообразной формы (Clostridium). Как правило, длина их в несколько виз превышает диаметр клетки. Палочки бактерий более короткие чем бацилл. Среди палочковидных бактерий встречаются парные клетки, так называемые диплобактерии или диплобациллы, а также соединенные в цепочки стрептобактерии или стреп-.тобациллы.
3.. Клетки группы бактерий с извитой или спиральной формой напоминают' спираль, некоторые из них представляют собой часть витка сцирали, другие состоят' из 15 и более витков. К ним относят: вибрионы (vibrio), изогнутые один раз в виде запятой; спириллы (spirillum), изогнутые пять—десять раз; спирохеты (spirochaeta), изогнутые 10—20 раз и представляющие длинные тонкие клетки.
К миру бактерий относят мельчайшие организмы, мельче их только микорлазмы, риккетсии, вирусы и бактериофаги. Средний размер бактериальной клетки составляет примерно 2 мкм (микрометра) в длину и около 1 мкм в ширину. Кокки обычно имеют диаметр 0,5—1,5 мкм; ширина палочковидных форм бактерий от 0,5 до 1 мкм, длина—2—10 мкм. Мелкие палочки имеют ширину 0,2—0?4 мкм и длину 0,7—1,5 мкм. Однако встречаются бактерии гигантских размеров, например серобактерии. Бактерии-гиганты достигают десятков и даже сотен микрометров в длину; диаметр микроплазм составляет 0,1—0,15 мкм. Если бактериальные клетки обычно можно увидеть в световой микроскоп, то вирусы, размеры большинства из которых находятся в диапазоне 16—200 нм (нанометров) , можно наблюдать только в электронный микроскоп.1 нм=0,001 микрометра
Вспомним, что 1 мм (миллиметр) = 10 мкм (микрометрам) == 10 нм (нанометрам) = 107 А (ангстремам) = 109 пм (пико-метрам). Малая величина бактериальных клеток очень затрудняет метрам). Малая величина бактериальных клеток очень затрудняет выявление деталей их внутреннего строения. В последнее время сконструированы специальные электронные микроскопы для обнаружения деталей внутреннего строения бактериального организма.
