- •Програма курсу
- •1. Термодинаміка і кінетика хімічної корозії металів. Газова корозія металів.
- •2. Закономірності росту плівок на металах.
- •1. Механізм електрохімічної корозії металів. Діаграми Пурбе.
- •2. Корозійні процеси з водневою та кисневою деполяризацією. Пасивність металів.
- •1. Електрохімічні методи захисту металів. Захисні середовища.
- •2. Корозійна характеристика металів та сплавів. Сталі та чавуни.
- •4. Види неметалевих антикорозійних покриттів.
- •5. Інгібітори корозії металів.
- •Техніка безпеки Загальні правила роботи в лабораторії
- •Методичні вказівки до оформлення робіт
- •Лабораторна робота №1 кінетика окислення металів на повітрі
- •1.1 Теоретична частина
- •Запитання для самоконтролю:
- •1.2 Методика роботи
- •1.3 Оформлення результатів
- •Лабораторна робота № 2 вплив температури на швидкість окислення металів на повітрі
- •2.1 Теоретична частина
- •Запитання для самоконтролю:
- •2.2 Методика роботи
- •2.3 Оформлення результатів
- •Запитання для самоконтролю:
- •3.2 Методика роботи
- •3.3. Оформлення результатів
- •Електрохімічна корозія з оксигенною деполяризацією
- •4.1 Теоретична частина
- •Запитання для самоконтролю:
- •4.2 Методика експерименту
- •4.3 Оформлення результатів
- •Гравіметричний метод визначення швидкості корозії
- •5.1 Теоретична частина
- •Запитання для самоконтролю:
- •5.2 Методика експерименту
- •5.3 Оформлення результатів
- •Розділ III. Засоби захисту металів від корозії Лабораторна робота № 6 захист металів від корозії за допомогою інгібіторів
- •6.1 Теоретична частина
- •6.2 Методика експерименту
- •6.3 Обробка результатів
- •Захисні гальванічні покриття: ніколювання купруму
- •7.1 Теоретична частина
- •Запитання для самоконтролю:
- •7.2 Методика експерименту
- •7.3 Оформлення результатів
- •Лабораторна робота № 8 анодне оксидування алюмінію
- •8.1 Теоретична частина
- •Запитання для самоконтролю:
- •Додатки
- •Література
Лабораторна робота № 2 вплив температури на швидкість окислення металів на повітрі
Ціль роботи - визначити температурну залежність швидкості окислення даного металу на повітрі.
2.1 Теоретична частина
Температура значно впливає на швидкість газової корозії металів. З підвищенням температури процеси газової корозії металів протікають швидше, незважаючи на зменшення їхньої термодинамічної можливості, що для найбільш розповсюдженого процесу газової корозії металів - реакції окислення металлу(II) оксигеном:
Me + 1/2 O2 = Me O , (р, T = const) , (1)
може бути визначено по зміні ізобарно-ізотермічного потенціалу ΔGT
ΔGT = - RT ln( р (O2) / р (O2) *׳ ) , (2)
де R = 8,31 Дж/(моль∙ К) - газова постійна величина;
T- абсолютна температура, К;
р (O2)* - парціальний тиск оксигену, що відповідає рівноважному стану системи (тиск дисоціації оксиду), Па;
р (O2) - парціальний тиск оксигену, що відповідає вихідному стану системи, Па;
Рівняння дозволяє оцінити можливість протікання процесу окислення. Якщо р (O2) > р (O2)* , тоді процес окислення можливий, тому що в цих умовах ΔGT < 0 . Якщо р (O2) < р (O2)* , тоді окислення неможливо , тому що при цьому ΔGT > 0. Таким чином, знак ΔGT є якісною, а значення ΔGT - кількісною характеристикою термодинамічної можливості процесів газової корозії металів.
Температура впливає на константу швидкості хімічної реакції і на масовий показник в процесі дифузії. Для обох випадків має місце експоненціальна залежність:
Km+ = Ae –Q/RT (3)
Це рівняння може бути перетворено логарифмуванням:
lg Km+ = lgA – Q/(2,303 RT) , (4)
де Km+- позитивний масовий показник швидкості корозії, г/(м2год);
А - постійна величина, рівна Km+ при 1/Т=0;
Q - ефективна енергія (теплота) активації процесу, Дж/моль;
Графік у координатах lg Km+ = f(1/T) (рис. 1) дає пряму або в ряді випадків ламану пряму, кожен злам якої відповідає змінам, що відбуваються в металі або в прилягаючій до нього оксидній плівці.
9
13
11
(1/Т)
·104
Рис.1. Температурна залежність окислення феруму в координатах: Кm+ - t0C (а) та Ig Кm+— 1/Т (6).[3].
Ця залежність зручна для графічного визначення швидкості газової корозії металу при будь-якій температурі. Вона ж може бути використана і для визначення постійних А и Q з одержаних даних:
Ig А = lg Km+ при 1/Т = 0; (5)
Q = - 2,303 R tg α = 2,303 R tg β, (6)
де α — кут, утворений прямою lg Km+ = f(1/T) з позитивним напрямком осі 1/T ; β — те ж, з негативним напрямком осі 1/Т.
Приведене співвідношення між швидкістю газової корозії металів і температурою може бути ускладнене або порушене, якщо зі зміною температури змінюється структура або деякі інші властивості металу чи оксидної плівки на ньому.
