- •Розділ ііі «Клітинний рівень організації живої природи».
- •Тема 2. Основні процеси клітинного рівня.
- •IV. Основний етап…………………....…………………................................25 хв
- •V. Закріплення матеріалу…………………………..............................13 хв
- •Vі. Домашнє завдання ………………………………………………….1 хв
- •Iіі. Мотивація навчальної і пізнавальної діяльності учнів.
- •Іv. Основний етап.
- •План уроку:
- •Ген. Генетичний код.
- •2. Властивості генетичного коду.
- •3. Етапи біосинтезу білка.
- •III етап. Трансляція
- •Загальна схема трансляції.
- •Генна регуляція Жакоб і Моно.
- •V. Закріплення матеріалу.
- •Vі. Домашнє завдання.
2. Властивості генетичного коду.
Генетичний код - це система триплетів нуклеотидів, які визначають амінокислотну послідовність поліпептидного ланцюга.
Дослідження генетичного коду розкрили його основні властивості:
- Триплетність - кожна амінокислота кодується послідовністю із трьох нуклеотидів - триплетом або кодоном (серед 64 кодонів 61 - змістовний і 3 незмістовні кодони - УАА, УГА та УАГ).
- Специфічність - один кодон відповідає лише одній амінокислоті.
- Виродженість (надлишковість) - одній амінокислоті відповідають кілька кодонів (наприклад серину чи лейцину відповідають 6 кодонів, метионіну - всього 1).
- Колінеарність - послідовність нуклеотидів в молекулі і-РНК точно відповідає амінокислотній послідовності у поліпептидному ланцюгу.
- Односпрямованість - зчитування інформації в процесі транскрипції і трансляції відбувається лише в напрямку 5' - 3' кінець.
- Неперекриваємість - останній нуклеотид попереднього кодону не належить наступному триплету.
- Безперервність - між триплетними «словами» відсутні «розділові знаки».
- Універсальність - в усіх організмах одні і ті самі амінокислоти кодуються одними і тими ж нуклеотидами (проте така властивість характерна лише для ядерного генетичного коду; мітохондріальний генетичний код має деякі відмінності від ядерного).
3. Етапи біосинтезу білка.
Біосинтез білка проходить у 3 етапи.
І етап. Транскрипція
Першим етапом біосинтезу є транскрипція. Транскрипція - це переписування послідовності нуклеотидів з певної ділянки одного ланцюга молекули ДНК. У результаті утворюється молекула іРНК.
Молекули ДНК кожної клітини містять інформацію для синтезу всіх необхідних їй білків. Молекули ДНК містяться в ядрі, а синтез білків відбувається в цитоплазмі. ДНК не може переміщуватися до місця синтезу білків у цитоплазму. Вона передає інформацію про структуру білків за участю специфічних молекул ІРНК, що утворюються на ДНК і переносяться з ядра в цитоплазму до місця синтезу білків. У синтезі білків беруть участь також інші РНК (тРНК та рРНК). Цей процес відбувається в основному під час інтерфази. На генах матриці ДНК утворюються всі три типи РНК - інформаційна, транспортна і рибосомна.
Зчитування спадкової інформації з генів регулюється спеціальними білками. Зокрема, гістони не тільки забезпечують структурну організацію хроматину, а й є репресорами, тому що перешкоджають зчитуванню генетичної інформації. Початок зчитування генетичної інформації пов'язаний зі звільненням певної ділянки ланцюга ДНК (гена) від гістонів, після чого ген активується і з нього починається зчитування спадкової інформації. Негістонові білки мають здатність розпізнавати гени, і цим забезпечується синтез необхідних білків.
Основні етапи транскрипції.
Ініціація. За сигналом з цитоплазми певна ділянка подвійної спіралі ДНК розкручується і розділяється на два ланцюги. Це відбувається за допомогою ферменту ДНК-залежна РНК-полімераза, що зв'язується з ДНК. Ферменти РНК-полімерази забезпечують утворення РНК, що зростають у довжину в міру просування ферменту вздовж нитки ДНК.
РНК полімераза починає синтезувати новий ланцюг біля спеціального старт-сигналу ДНК, що називається промотором, і закінчує його біля стоп-сигналу (сигнал термінації), після чого полімераза та синтезований готовий ланцюг РНК відокремлюються один від одного. Ділянка ДНК між промотором і термінатором, яка транскрибується, називається одиницею транскрипції. Молекула РНК, яка при цьому утворюється, називається первинним транскриптом, або про-іРНК.
Швидкість полімеризації за температури 37 С становить майже 30 нуклеотидів за 1 с, тому синтез ланцюга РНК завдовжки 5000 нуклеотидів триває близько 3 хв.
Один з двох ланцюгів ДНК, на якому йде транскрипція, називається кодувальним ланцюгом. Другий ланцюг ДНК називається ланцюгом, що не кодує. У різних білках кодувати можуть як один, так і другий ланцюги ДНК.
Елонгація - процес нарощування полінуклеотидного ланцюга. Відповідні рибонуклеотиди приєднуються до матричного ланцюга, згодом об'єднуються один з одним залишками фосфорної кислоти, створюючи ланцюг РНК. Процес каталізується РНК-полімеразою і потребує наявності йонів. УтворенняіРНК відбувається на основі принципу комплементарності ланцюгів ДНК і РНК та антипаралельно відносно матричного ланцюга ДНК.
Таким чином, сформований ланцюг РНК містить азотисті основи, комплементарні основам ланцюга ДНК, уздовж якого вони утворилися.
Різні типи РНК в еукаріотів - інформаційна РНК (іРНК), рибосомальна РНК (рРНК) і транспортна РНК (тРНК) - транскрибуються на різних ділянках (генах) молекул ДНК.
Термінація. РНК-полімераза рухається вздовж ланцюга ДНК і поступово переписує інформацію на РНК. Цей процес завершується після того, як фермент досягне специфічної нуклеотидної послідовності, що сигналізує про завершення транскрипції (термінатори транскрипції - АТТ, АЦТ і АТЦ). Ділянка молекули ДНК, що містить промотор, послідовність, яка транскрибується, та термінатор - усе це називають транскриптоном.
Ланцюг про-іРНК відокремлюється від матричного ланцюга ДНК, зазнає процесингу і переноситься в цитоплазму крізь пори в ядерній оболонці. Вільна від іРНК ділянка молекули ДНК знову зв'язується водневими зв'язками з комплементарною ділянкою другого ланцюга. ДНК скручується в спіраль і набуває початкової форми. Окрема молекула ДНК може бути матрицею для синтезу багатьох копій різних молекул РНК, що утворюються одна за другою.
Процесинг. Молекулярні механізми, пов'язані з «дозріванням» різних типів РНК, називають процесингом. Вони здійснюються в ядрі перед виходом РНК із ядра в цитоплазму.
Існувала думка, що іРНК комплементарна будові ДНК, яка с матрицею. З'ясувалося, що комплементарною ДНК є тільки молекула-попередниця інформаційної РНК (про-іРНК). Молекули про-іРНК набагато більші, ніж зрілі іРНК. Послідовність азотистих основ у молекулі про-іРНК, що утворилася, точно відтворює порядок чергування основ у ДНК. Під час «дозрівання» інформаційної РНК у бактерій відбувається тільки відщеплення кінців молекули, а в еукаріотів і деяких вірусів цей процес набагато складніший. Молекула про-іРНК містить у собі кілька інертних ділянок (інтронів), що не мають генів.
У процесі "дозрівання" іРНК спеціальні ферменти вирізають інтрони і зшивають активні ділянки, що залишилися (екзони). Цей процес називають сплайсингом. Тому послідовність нуклеотидів у дозрілої іРНК не є цілком комплементарною нуклеотидам ДНК. В іРНК поруч можуть стояти такі нуклеотиди, комплементарні яким нуклеотиди в ДНК знаходяться один від одного на значній відстані. Сплайсинг - дуже точний процес. Його порушення змінює рамку зчитування при трансляції, що призводить до синтезу іншого пептиду. Точність вирізання інтронів забезпечується розпізнаванням ферментів певних сигнальних послідовностей нуклеотидів у молекулі про-іРНК.
У процесингу беруть участь ферменти. Наприклад, за допомогою ферментів-рестриктаз вирізаються інтронні ділянки, а ек-зонні ділянки, що залишаються, зшиваються за допомогою ферментів лігаз. Отже, молекули іРНК або тРНК, що утворюються, мають менші розміри, ніж їхні структурні гени. Наприклад, молекули про-іРНК мають молекулярну масу 107 дальтон, а після процесингу вона становить 2 х Ю6 дальтон. Наявність інтронів у генах еукаріотів є універсальним явищем. У великих генах їхній вміст коливається в межах 1-50. Можна припустити, що інтрони є запасом інформації, що зумовлює мінливість.
Значення процесингу полягає в тому, що еукаріотична клітина може додатково контролювати процеси утворення білків, регулювати свій метаболізм, структуру і функції.
II етап. Активація амінокислот. Цей процес відбувається в цитоплазмі. Активовані молекули амінокислот з’єднуються з відповідними молекулами транспортних РНК. У молекулі тРНК є дві важливі ділянки: акцепторна ділянка, до якої прикріплюється відповідна амінокислота, антикодон - триплет нуклеотидів, який комплементарний кодону ІРНК даної амінокислоти. Активовані амінокислоти, сполучені з тРНК, надходять до рибосом.
