Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по статистике.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
1.49 Mб
Скачать

7.3 Средняя арифметическая и средняя гармоническая форма

агрегатного индекса

Помимо агрегатных, в статистике используются и средневзвешенные индексы.

К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Например, если отсутствуют данные о ценах, но имеется информация о стоимости продукции в текущий период и известны индивидуальные индексы цен по каждому товару, то нельзя определить общий индекс цен как агрегатный, но можно вычислить его как средний из индивидуальных индексов.

Средний индекс — это индекс, вычисленный как средняя величина из индивидуальных индексов.

При исчислении средних индексов используются две формы средних: средняя арифметическая и средняя гармоническая.

Средний арифметический индекс будет тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса.

Зависимость для определения среднего арифметического индекса физического объема продукции будет иметь вид:

Поскольку iq × q0 = q1 , то формула этого индекса легко преобразуется в полученную ранее

.

Сводный индекс цен в форме средней гармонической используется, если в агрегатном индексе числитель является реальной величиной, а знаменатель составлен как сумма слагаемых, полученных по величинам, относящимся к разным периодам:

Средние индексы широко используются при анализе рынка ценных бумаг. Наиболее известными являются индексы Доу—Джонса, Стандард и Пур, индекс акций высокотехнологичной фирмы «НАСДАК» и др.

7.4 Индексы постоянного и переменного состава

Необходимость применения индексов постоянного и переменного состава возникает в том случае, когда динамика средних показателей отражает изменение не только усредняемого признака, но и состава данной совокупности.

Так, например, средняя цена на молоко может изменяться не только под влиянием изменения цены молока, но и в результате изменения структуры (состава) товарной массы; средняя себестоимость какого-либо изделия может измениться не только в результате изменения себестоимости этого изделия на заводах, но и в результате изменения удельных весов заводов с разной себестоимостью в общем выпуске этого изделия. Этот индекс получил название индекса переменного состава.

Индексы переменного состава это отношение средних величин качественного показателя:

Индекс переменного состава показывает динамику среднего показателя, как за счет применения индексируемой величины, так и за счет изменения весов по которым взвешивается средняя, т.е. влияние обоих факторов.

Для того чтобы устранить влияние изменения структуры совокупности на динамику средней величины, необходимо взять отношение средних взвешенных с одними и теми же весами. Индекс, характеризующий динамику средней величины при одной и той же фиксированной структуре совокупности, называется индексом постоянного (фиксированного) состава и может быть вычислен по формуле:

Индекс постоянного состава говорит о том, как в отчетном периоде по сравнению с базовым изменилась средняя величина показателя по однородной совокупности за счет изменения только лишь самой индексируемой величины, т. е. когда влияние структурного фактора устранено.

Индекс структурных сдвигов рассчитывается как отношение среднего уровня индексируемого показателя базисного периода, определенного на отчетную структуру, к фактической средней этого показателя в базисном периоде. Он нужен для измерения влияния только структурных изменений в исследуемый средний показатель. Индекс структурных сдвигов рассчитывается по формуле: