- •Содержание
- •3.3. Контрольные вопросы 69
- •4.5. Контрольные вопросы 85
- •Введение
- •Основные условные обозначения
- •Определения основных параметров ориентации подвижного объекта:
- •Определения использованных систем координат:
- •1Параметры угловой ориентации подвижного объекта
- •1.1. Углы ортогональных поворотов.
- •Варианты последовательностей ортогональных поворотов
- •1.2. Направляющие косинусы
- •1.2.1. Обозначения векторов и матриц
- •1.2.2. Матрицы направляющих косинусов
- •1.2.3. Матрица конечного поворота
- •1.2.4. Матричная форма формулы Эйлера
- •1.2.5. Формула Пуассона
- •1.2.6. Производная матрицы направляющих косинусов, определяющей ориентацию промежуточных систем координат
- •1.2.7. Сводная таблица основных формул матриц направляющих косинусов
- •1.3. Методы графов в решении кинематических задач.
- •1.3.1. Схемы связи между системами координат
- •1.1Элементарные графы ортогональных поворотов.
- •1.5. Кватернионы
- •1.2Определение кватернионов и их свойства
- •1.3Связь параметров кватернионов с углами ортогональных поворотов
- •1.4Связь направляющих косинусов с параметрами кватернионов
- •1.5Кинематические уравнения (в кватернионной форме)
- •Контрольные вопросы
- •2. Определение параметров ориентации ла по показаниям гиу Постановка задачи.
- •Определения углов наклона ла по показаниям гиу
- •Определение угла направления ла по показаниям гироагрегата
- •Контрольные вопросы
- •Погрешности определения углов ориентации подвижных объектов
- •Кардановые погрешности гироустройств
- •Определение
- •1.1Способы определения кардановых погрешностей
- •1.2Определение кардановой погрешности гировертикали.
- •1.2.1Гировертикаль
- •1.2.2Способ, основанный на использовании Правил Непера
- •1.2.3Способ, основанный на решении матричных кинематических уравнений
- •3.1.3.4. Способ, основанный на использовании проекций вектора кинетического момента
- •3.2. Уравнения погрешности работы гироскопической вертикали
- •1.3Введение.
- •1.4Идеальный режим.
- •1.5Общий режим.
- •1.6Составление прецессионных уравнений погрешности работы гировертикали
- •3.3. Контрольные вопросы
- •4. Совместное определение угловой ориентации подвижного объекта и параметров его движения
- •4.1. Однородные координаты
- •4.2. Задание положения используемых систем координат
- •4.3. Определение абсолютных линейных скоростей и ускорений места установки измерительных устройств
- •4.4. Пример: абсолютные угловые скорости и линейные ускорения места установки блока датчиков.
- •1.7Постановка задачи
- •1.8Показания датчиков угловой скорости
- •1.9Показания акселерометров
- •4.5. Контрольные вопросы
- •Список литературы
- •Параметры угловой ориентации подвижных объектов: прикладные задачи
Список литературы
Айзерман М.А. Классическая механика. – М.: Наука,1974, с.368.
Бранец В.Н., Шмыгловский И.П. Применение кватернионов в задачах ориентации твердого тела. – М.: Наука, 1973. 320 с.
Бромберг П.В., Михалев И.А., Никитин Е.А., Бауман В.А., Балашова А.А. Гироскопические системы. ч. II. Гироскопические приборы и системы. Под ред. Д.С. Пельпора.- М.: Высшая школа, 1971. – 488 с.: ил.
Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1965, 608 с.
Зенкевич С.Л., Ющенко А.С. Основы управления манипуляционными роботами: Учебник для вузов.– 2-е изд., исправ. и доп.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.- 480 с. ил.
Ишлинский А.Ю. Ориентация, гироскопы и инерциальная навигация. – М.,"Наука",1976, с.672.
Литвин – Седой М.З. Введение в механику управляемого полета.– М.: Высшая школа,1962, с. 212.
Одинцов А.А., Павловский М.А., Бублик Г.Ф., Евгеньев В.С., Бондарь П.М. Теория гироскопов и гироскопических приборов. Практикум. К.: Высшая школа, 1976.
Робототехника и гибкие автоматизированные производства. В 9-ти кн. Кн. 5. Моделирование робототехнических систем и гибких автоматизированных производств. Учеб. пособие для вузов/ С.В. Пантюшин, В.М. Назаретов, О.А. Тягунов и др.; Под ред. И.М.Макарова. – М.: Высшая школа,1986.–175 с.: ил.
ПОТАПОВ Анатолий Андреевич
Параметры угловой ориентации подвижных объектов: прикладные задачи
