- •Содержание курса
- •Раздел 1. Электрическая цепь и ее основные законы
- •Раздел 2. Электромагнетизм и электромагнитная индукция
- •Раздел 3. Электрические машины постоянного тока
- •Раздел 1. Электрическая цепь и ее основные законы
- •2. Электрическое поле. Электрический потенциал и напряжение
- •3. Электрический ток и электропроводность вещества
- •4. Электрическое сопротивление
- •5. Электродвижущая сила и напряжение источника электрической энергии
- •6. Электрическая цепь и ее элементы
- •7. Закон ома
- •8. Использование резисторов для регулирования силы тока в электрической цепи
- •9. Режимы работы электрической цепи
- •10. Законы кирхгофа
- •11. Последовательное, параллельное и смешанное соединения резисторов (приемников электрической энергии)
- •12. Распределение потенциалов и тока в электрической цепи
- •13. Мостовая схема соединения резисторов и ее применение
- •14. Работа и мощность электрического тока
- •15. Тепловое действие тока
- •16. Передача электрической энергии по проводам
- •17. Понятие о нелинейных сопротивлениях
- •Вопросы для самоподготовки
- •Раздел 2. Электромагнетизм и электромагнитная индукция
- •1. Магнитное поле и его основные характеристики
- •2. Магнитное поле проводника с током и способы его усиления
- •3. Магнитные свойства различных веществ
- •4. Магнитная цепь
- •5. Электромагнитные силы, создаваемые магнитным полем
- •6. Электромагнитная индукция
- •7. Вихревые токи
- •8. Самоиндукция и взаимоиндукция
- •Вопросы для самоподготовки
- •Раздел 3. Электрические машины постоянного тока
- •1. Процесс преобразования энергии
- •2. Принцип действия и назначение коллектора
- •3. Основные части электрических машин и их назначение
- •4. Обмотки якоря
- •5. Реакция якоря
- •6. Коммутация
- •7. Генераторы
- •8. Электродвигатели
- •9. Пуск в ход электродвигателей постоянного тока
- •10. Регулирование частоты вращения электродвигателей
- •11. Электрическое торможение
- •12. Мощность и коэффициент полезного действия электрических машин
- •13. Особенности работы машин постоянного тока при пульсирующем напряжении
- •Вопросы для самоподготовки
- •Раздел 4. Химические источники тока
- •1. Электрический ток в жидких проводниках
- •2. Понятие о гальванических элементах
- •3. Кислотные аккумуляторы
- •4. Щелочные аккумуляторы
- •5. Электрические характеристики аккумуляторов
- •6. Способы соединения аккумуляторов в батареи
- •Вопросы для самоподготовки
- •Раздел 5. Физические основы работы электрических аппаратов
- •1. Назначение и классификация электрических аппаратов
- •2. Контакты электрических аппаратов
- •3. Электрическая дуга и методы ее гашения
- •4. Приводы электрических аппаратов
- •5. Основы работы плавких предохранителей
- •Вопросы для самоподготовки
- •Раздел 6. Электроизмерительные приборы и методы измерений
- •1. Назначение и типы электроизмерительных приборов
- •2. Магнитоэлектрические приборы
- •3. Электромагнитные приборы
- •4. Электродинамические и ферродинамические приборы
- •5. Индукционные приборы
- •6. Логометры
- •Вопросы для самоподготовки
- •Раздел 7. Принцип действия, основные параметры и устройство полупроводниковых приборов
- •1. Принцип действия полупроводниковых приборов
- •2. Основные параметры диодов
- •3. Устройство диодов
- •8. Симисторы (симметричные тиристоры)
- •9. Полупроводниковые резисторы
3. Магнитные свойства различных веществ
Ферромагнитные, парамагнитные и диамагнитные материалы. Все вещества—твердые, жидкие и газообразные в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.
К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают весьма высокой магнитной проницаемостью и в тысячи и даже десятки тысяч раз большей магнитной проницаемости неферромагнитных веществ, и хорошо притягиваются к магнитам и электромагнитам.
К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Относительная магнитная проницаемость μ у них несколько больше единицы. Парамагнитные материалы притягиваются к магнитам и электромагнитам в тысячи раз слабее, чем ферромагнитные материалы.
Диамагнитные материалы к магнитам не притягиваются, а наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр. Относительная магнитная проницаемость μ у них несколько меньше единицы.
Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов и других электротехнических установок. Основными характеристиками их являются: кривая намагничивания, ширина петли гистерезиса и потери мощности при перемагничивании.
Кривая
намагничивания.
Процесс намагничивания ферромагнитного
материала можно изобразить в виде кривой
намагничивания (рис. 47, а),
которая
представляет собой зависимость индукции
В
от
напряженности Н
магнитного
поля. Так как напряжен
ность
магнитного поля определяется силой
тока, посредством которго намагничивается
ферромагнитный материал, эту кривую
можно рассматривать как зависимость
индукции от намагничивающего тока.
Кривую намагничивания можно разбить на три участка: Оа,на котором магнитная индукция возрастает почти пропорционально намагничивающему току (напряженности поля); аб, на котором pocт магнитной индукции замедляется («колено» кривой намагничивания), и участок магнитного насыщения за точкой б, где зависимость В от Н становится опять прямолинейной, но характеризуется весьма медленным нарастанием магнитной индукции при увеличении напряженности поля по сравнению с первым и вторым участками кривой.
Следовательно, при большом насыщении ферромагнитные вещества по способности пропускать магнитный поток приближаются к неферромагнитным материалам (магнитная проницаемость их резко уменьшается). Магнитная индукция, при которой происходит насыщение, зависит от рода ферромагнитного материала. Чем больше индукция насыщения ферромагнитного материала, тем меньший намагничивающий ток требуется для создания в нем заданной индукции и, следовательно, тем лучше он пропускает магнитный поток.
Магнитную индукцию в электрических машинах, аппаратах и приборах выбирают в зависимости от предъявляемых к ним требований. Если необходимо, чтобы случайные колебания намагничивающего тока мало влияли на магнитный поток данной машины или аппарата, то выбирают индукцию, соответствующую условиям насыщения (например, в генераторах постоянного тока с параллельным возбуждением). Если же желательно, чтобы индукция и магнитный поток изменялись пропорционально намагничивающему току (например, в электроизмерительных приборах), то выбирают индукцию, соответствующую прямолинейному участку кривой намагничивания.
Перемагничивание ферромагнитных материалов, петля гистерезиса. Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 47, б показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I или напряженности магнитного поля Н). Как видно из этого графика, при одних и тех же значениях напряженностн магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а—б—в), будет больше индукции, полученной при намагничивании (участки О—а и д–а. Когда напряженность поля (намагничивающий ток) будет доведена до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение Вr соответствующее отрезку Об. Это значение называется остаточной индукцией.
Явление отставания, или запаздывания изменений магнитной индукции, от соответствующих изменений напряженности магнитного поля, называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока — остаточным магнетизмом.
При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Нс, при которой индукция в ферромагнитном материале уменшается до нуля, называется коэрцитивной силой. Кривую О—a, получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания.
Следовательно, при перемагничнвании ферромагнитного вещества, например при постепенном намагничивании и размагничивании стального сердечника электромагнита (см. стрелки на рис. 47, б), кривая изменения индукции будет иметь вид петли; ее называют петлей гистерезиса.
Потери энергии при перемагничивании. При периодическом перемагничивании ферромагнитного вещества затрачивается определенная энергия, которая выделяется в виде тепла, вызывая нагревание ферромагнитного вещества. Потери энергии, связанные с процессом перемагничиванмя стали, называются потерями на гистерезисе. Значение этих потерь при каждом цикле перемагничивания пропорционально площади петли гистерезиса. Потери мощности на гистерезис пропорциональны квадрату максимальной индукции Bmax и частоте перемагничивания f. Поэтому при значительном увеличении индукции в магнитопроводах электрических машин и аппаратов, работающих в переменном магнитном поле, эти потери резко возрастают.
В
лияние
ферромагнитных материалов на распределение
магнитного поля.
Если поместить в магнитное поле какое-либо
тело из ферромагнитного материала, то
магнитные силовые линии будут входить
и выходить из него под прямым углом.
В самом теле и около него будет иметь
место сгущение силовых линий, т. е.
индукция магнитного поля внутри тела
и вблизи него возрастает. Если выполнить
ферромагнитное тело в виде кольца, то
во внутреннюю его полость магнитные
силовые линии практически проникатъ
не будут (рис. 48), и кольцо будет служить
магнитным экраном, защищающим
внутреннюю полость от влияния магнитного
поля. На этом свойстве ферромагнитных
материалов основано действие различных
экранов, защищающих электроизмерительные
приборы, электрические кабели и
другие электротехнические устройства
от вредного воздействия внешних
магнитных полей.
