Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная алгебра - Глава 6.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
477.7 Кб
Скачать

8. Ортогональные системы векторов.

Определение 1. Система векторов евклидова пространства { } называется ортогональной, если все ее элементы попарно ортогональны:

Теорема 1. Ортогональная система неравных нулю векторов линейно независима.

{Предположим, система линейно зависима: и, для определенности, Умножим скалярно равенство на . Учитывая ортогональность системы, получим: }

Определение 2. Система векторов евклидова пространства { } называется ортонормированной, если она ортогональна и норма каждого элемента равна единице.

Из теоремы 1 сразу следует, что ортонормированная система элементов всегда линейно независима. Отсюда, в свою очередь, следует, что в n – мерном евклидовом пространстве ортонормированная система из n векторов образует базис (например, {i , j , k} в 3х – мерном пространстве). Такая система называется ортонормированным базисом, а ее векторы – базисными ортами.

Координаты вектора в ортонормированном базисе можно легко вычислить с помощью скалярного произведения: если Действительно, умножая равенство на , получаем указанную формулу.

Вообще, все основные величины: скалярное произведение векторов, длина вектора, косинус угла между векторами и т.д. имеют наиболее простой вид в ортонормированном базисе. Рассмотрим скалярное произведение: , так как

а все остальные слагаемые равны нулю. Отсюда сразу получаем: ,

* Рассмотрим произвольный базис . Скалярное произведение в этом базисе будет равно:

(Здесь αi и βj – координаты векторов в базисе {f}, а – скалярные произведения базисных векторов).

Величины γij образуют матрицу G, называемую матрицей Грама. Скалярное произведение в матричной форме будет иметь вид: *

Теорема 2. В любом n – мерном евклидовом пространстве существует ортонормированный базис. Доказательство теоремы носит конструктивный характер и носит название

9. Процесс ортогонализации Грама – Шмидта.

Пусть {a1 ,...,an} − произвольный базис n – мерного евклидова пространства (существование такого базиса обусловлено n – мерностью пространства). Алгоритм построения по данному базису ортонормированного заключается в следующем:

1. b1=a1, e1 = b1/ b1, e1=1.

2. b2e1, т.к. (e1, a2)- проекция a2 на e1 , b2= a2- (e1, a2)e1, e2 = b2/ b2, e2=1.

3. b3e1, b3e2, b3= a3- (e1, a3)e1- (e2, a3)e2, e3 = b3/ b3, e3=1.

.........................................................................................................

k. bke1,..., bkek-1, bk= ak- i=1 k-1(ei, ak)ei, ek = bk/ bk, ek=1.

Продолжая процесс, получаем ортонормированный базис {e1,...,en}.

Замечание 1. С помощью рассмотренного алгоритма можно построить ортонормированный базис любой линейной оболочки, например, ортонормированный базис линейной оболочки системы, имеющей ранг равный трем и состоящей из пятимерных векторов.

Пример. x=(3,4,0,1,2), y=(3,0,4,1,2), z=(0,4,3,1,2)

Замечание 2. Особые случаи

Процесс Грама — Шмидта может применяться также к бесконечной последовательности линейно независимых векторов.

Кроме того, процесс Грама — Шмидта может применяться к линейно зависимым векторам. В этом случае он выдаёт 0 (нулевой вектор) на шаге j, если aj является линейной комбинацией векторов a1 ,...,aj-1. Если это может случиться, то для сохранения ортогональности выходных векторов и для предотвращения деления на ноль при ортонормировании алгоритм должен делать проверку на нулевые векторы и отбрасывать их. Количество векторов, выдаваемых алгоритмом, будет равно размерности подпространства, порождённого векторами (т.е. количеству линейно независимых векторов, которые можно выделить среди исходных векторов).