- •Овременная классификация
- •Основные элементы
- •Принцип работы
- •Реимущества использования
- •Применение в промышленности
- •Правильная эксплуатация
- •Выбор циркуляционного насоса для системы отопления. Часть 4
- •Подбор характеристик циркуляционного насоса по рабочей точке, находящейся в зоне максимального кпд.
- •Последовательная работа центробежных насосов
- •Подобие центробежных насосов
- •Подобие центробежных насосов при определении ns
- •Обзор[править | править вики-текст]
- •Вредные последствия[править | править вики-текст]
- •Полезное применение[править | править вики-текст]
- •Применение в биомедицине[править | править вики-текст]
- •Лопастные насосы и винты судов[править | править вики-текст]
- •Лопастные насосы. Кавитация на стороне всасывания[править | править вики-текст]
- •Центробежные насосы. Кавитация в уплотнении рабочего колеса[править | править вики-текст]
- •Кавитация в двигателях[править | править вики-текст]
- •Предотвращение последствий[править | править вики-текст]
- •Другие области применения[править | править вики-текст]
- •Число кавитации[править | править вики-текст]
- •Гидравлический расчет простого трубопровода
- •Сортамент труб
- •Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов
- •Зависимость коэффициента гидравлического сопротивления от числа Рейнольдса и эквивалентной шероховатости труб
- •Основные формулы для ламинарного режима в трубах
- •Коэффициенты некоторых местных сопротивлений
- •Коэффициент сопротивления диафрагмы
- •Пример зависимости мощности n, к.П.Д. Η и напора h, развиваемого насосом, от расхода
- •Регулирование подачи центробежных насосов
- •Пластинчатые насосы
- •9. Автоматизация компрессорных установок
- •9.1. Регулирование производительности компрессорных установок
- •9.2. Автоматизация компрессорных агрегатов и станций
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Цели автоматизации[править | править вики-текст]
- •Задачи автоматизации и их решение[править | править вики-текст]
- •Принципы автоматизации процессов
- •Уровни автоматизации процессов
- •Промышленные контроллеры — мозг современной энергетики
- •Интегрированные системы на базе сикон с50
- •Распределённые системы на базе контроллера сикон тс65i
- •Будущее
- •Содержание
- •Уровни модели osi[править | править вики-текст]
- •Прикладной уровень[править | править вики-текст]
- •Уровень представления[править | править вики-текст]
- •Сеансовый уровень[править | править вики-текст]
- •Транспортный уровень[править | править вики-текст]
- •Сетевой уровень[править | править вики-текст]
- •Канальный уровень[править | править вики-текст]
- •Физический уровень[править | править вики-текст]
- •Соответствие модели osi и других моделей сетевого взаимодействия[править | править вики-текст]
- •Семейство tcp/ip[править | править вики-текст]
- •Семейство ipx/spx[править | править вики-текст]
- •Критика[править | править вики-текст]
- •Дискретный ввод/вывод в плк
- •Модули ввода
- •Модули вывода
- •Релейные выходные модули
- •Транзисторные выходные модули
- •Симисторные выходные модули
- •Процессорные модули производства ао "пик прогресс"
- •Процессорный модуль усо-ко
- •Процессорный модуль кмкс pm-vdx
- •Функциональные возможности промышленных контроллеров
- •Заметки для начинающего инженера
- •03. Программируемый логический контроллер (плк)
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Централизованное и динамическое конфигурирование
- •Функциональные возможности PcVue
- •Иерархическая база данных и архивирование в субд
- •Интеграция PcVue с другими системами
- •IntraVue — мониторинг и обслуживание промышленных ip-устройств
- •Заключение
Полезное применение[править | править вики-текст]
Хотя кавитация нежелательна во многих случаях, есть исключения. Например, сверхкавитационные торпеды, используемые военными, обволакиваются в большие кавитационные пузыри. Существенно уменьшая контакт с водой, эти торпеды могут передвигаться значительно быстрее, чем обыкновенные торпеды. Так сверхкавитационная торпеда «Шквал», в зависимости от плотности водной среды, развивает скорость до 500 км/ч. Такие исследования проводились, например, в Институте гидромеханики НАН Украины[2].
Кавитация используется при ультразвуковой очистке поверхностей твёрдых тел. Специальные устройства создают кавитацию, используя звуковые волны в жидкости. Кавитационные пузыри, схлопываясь, порождают ударные волны, которые разрушают частицы загрязнений или отделяют их от поверхности. Таким образом, снижается потребность в опасных и вредных для здоровья чистящих веществах во многих промышленных и коммерческих процессах, где требуется очистка как этап производства.
В промышленности кавитация часто используется для гомогенизации (смешивания) и отсадки взвешенных частиц в коллоидном жидкостном составе, например, смеси красок или молоке. Многие промышленные смесители основаны на этом принципе. Обычно это достигается благодаря конструкции гидротурбин или путём пропускания смеси через кольцевидное отверстие, которое имеет узкий вход и значительно больший по размеру выход: вынужденное уменьшение давления приводит к кавитации, поскольку жидкость стремится в сторону большего объёма. Этот метод может управляться гидравлическими устройствами, которые контролируют размер входного отверстия, что позволяет регулировать процесс работы в различных средах. Внешняя сторона смесительных клапанов, по которой кавитационные пузыри перемещаются в противоположную сторону, чтобы вызвать имплозию(внутренний взрыв), подвергается огромному давлению и часто выполняется из сверхпрочных или жестких материалов, например, из нержавеющей стали,стеллита или даже поликристаллического алмаза (PCD).
Кавитацию используют для обработки топлива, во время обработки топливо дополнительно очищается (при проведении химического анализа сразу обнаруживается существенное уменьшение количества фактических смол)[3], и перераспределяется соотношение фракций (в сторону более лёгких). Эти изменения, если топливо сразу поступает к потребителю, повышает его качество и калорийность, как следствие более полное сгорание и уменьшение массовой доли загрязняющих веществ. Сейчас до сих пор проходят исследования по влиянию кавитации на топливо, их проводят частные компании и институты, например Российский государственный университет нефти и газа им. И. М. Губкина.
Также были разработаны кавитационные водные устройства очистки, в которых граничные условия кавитации могут уничтожить загрязняющие вещества и органические молекулы. Спектральный анализ света, испускаемого в результате сонохимической реакции, показывает химические и плазменные базовые механизмы энергетической передачи. Свет, испускаемый кавитационными пузырями, называется сонолюминесценцией.
Многие энтузиасты строят на самодельных кавитаторах отопительные системы для частных домов. Суть системы заключается в замкнутом контуре, в котором циркулирует вода через кавитатор, а давление создает обыкновенный насос. В августе 2013го года в России был получен первый патент под номером 2490556 на отопительную установку, работающую на основе кавитации. По этому патенту дополнительная тепловая энергия выделяется в результате образования и схлопывания пузырьков в переменном электрическом поле 220В. Токи, которые создают эффект кавитации, но не разрушают электроды, выбраны из условий, что сами пузырьки для работы образуются достаточно малых размеров и потому не способны схлопываться на электродах, а отрываются и уже схлопываются в воде, тем самым отдавая воде свою энергию. Также технология кавитационного нагрева активно используется шарлатанами, которые приписывают своим установкам КПД выше 100%[4].
Кавитационные процессы имеют высокую разрушительную силу, которую используют для дробления твёрдых веществ, которые находятся в жидкости. Одним из применений таких процессов является измельчение твёрдых включений в тяжёлые топлива, что используется для обработки котельного топлива с целью увеличения калорийности его горения.
Кавитационные устройства снижают вязкость углеводородного топлива, что позволяет снизить необходимый нагрев и увеличить дисперсность распыления топлива.
Кавитационные устройства используются для создания водно-мазутных и водно-топливных эмульсий и смесей, которые часто используются для повышения эффективности горения или утилизации обводнённых видов топлива.
