- •Овременная классификация
- •Основные элементы
- •Принцип работы
- •Реимущества использования
- •Применение в промышленности
- •Правильная эксплуатация
- •Выбор циркуляционного насоса для системы отопления. Часть 4
- •Подбор характеристик циркуляционного насоса по рабочей точке, находящейся в зоне максимального кпд.
- •Последовательная работа центробежных насосов
- •Подобие центробежных насосов
- •Подобие центробежных насосов при определении ns
- •Обзор[править | править вики-текст]
- •Вредные последствия[править | править вики-текст]
- •Полезное применение[править | править вики-текст]
- •Применение в биомедицине[править | править вики-текст]
- •Лопастные насосы и винты судов[править | править вики-текст]
- •Лопастные насосы. Кавитация на стороне всасывания[править | править вики-текст]
- •Центробежные насосы. Кавитация в уплотнении рабочего колеса[править | править вики-текст]
- •Кавитация в двигателях[править | править вики-текст]
- •Предотвращение последствий[править | править вики-текст]
- •Другие области применения[править | править вики-текст]
- •Число кавитации[править | править вики-текст]
- •Гидравлический расчет простого трубопровода
- •Сортамент труб
- •Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов
- •Зависимость коэффициента гидравлического сопротивления от числа Рейнольдса и эквивалентной шероховатости труб
- •Основные формулы для ламинарного режима в трубах
- •Коэффициенты некоторых местных сопротивлений
- •Коэффициент сопротивления диафрагмы
- •Пример зависимости мощности n, к.П.Д. Η и напора h, развиваемого насосом, от расхода
- •Регулирование подачи центробежных насосов
- •Пластинчатые насосы
- •9. Автоматизация компрессорных установок
- •9.1. Регулирование производительности компрессорных установок
- •9.2. Автоматизация компрессорных агрегатов и станций
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Цели автоматизации[править | править вики-текст]
- •Задачи автоматизации и их решение[править | править вики-текст]
- •Принципы автоматизации процессов
- •Уровни автоматизации процессов
- •Промышленные контроллеры — мозг современной энергетики
- •Интегрированные системы на базе сикон с50
- •Распределённые системы на базе контроллера сикон тс65i
- •Будущее
- •Содержание
- •Уровни модели osi[править | править вики-текст]
- •Прикладной уровень[править | править вики-текст]
- •Уровень представления[править | править вики-текст]
- •Сеансовый уровень[править | править вики-текст]
- •Транспортный уровень[править | править вики-текст]
- •Сетевой уровень[править | править вики-текст]
- •Канальный уровень[править | править вики-текст]
- •Физический уровень[править | править вики-текст]
- •Соответствие модели osi и других моделей сетевого взаимодействия[править | править вики-текст]
- •Семейство tcp/ip[править | править вики-текст]
- •Семейство ipx/spx[править | править вики-текст]
- •Критика[править | править вики-текст]
- •Дискретный ввод/вывод в плк
- •Модули ввода
- •Модули вывода
- •Релейные выходные модули
- •Транзисторные выходные модули
- •Симисторные выходные модули
- •Процессорные модули производства ао "пик прогресс"
- •Процессорный модуль усо-ко
- •Процессорный модуль кмкс pm-vdx
- •Функциональные возможности промышленных контроллеров
- •Заметки для начинающего инженера
- •03. Программируемый логический контроллер (плк)
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Централизованное и динамическое конфигурирование
- •Функциональные возможности PcVue
- •Иерархическая база данных и архивирование в субд
- •Интеграция PcVue с другими системами
- •IntraVue — мониторинг и обслуживание промышленных ip-устройств
- •Заключение
Дискретные приложения
ПЛК обычно управляют машинами или процессами последовательными по своему происхождению, используя "дискретные" входы и выходы для определения состояния объекта. Например, если концевой выключатель определяет наличие детали, то он переходит в состояние "ВКЛЮЧЕНО", а если не обнаруживает деталь, то выдает сигнал "ВЫКЛЮЧЕНО".
Машина или устройство постоянно выполняет предопределенные последовательные действия либо на основании событий, либо по истечению заданного времени. Предполагаемая последовательность действий обычно прерывается только тогда, когда возникает аварийная ситуация.
Именно для подобных применений появились первые системы автоматики на базе релейных схем, а на смену им пришли первые ПЛК.
Приложения для управления процессами
ПЛК может также управлять непрерывными процессами, т.е. принимать и выдавать аналоговые сигналы. Например, температурный датчик выдает изменяющийся переменный сигнал 0-10 В на основании измерения фактической температуры. Программа контроллера постоянно отслеживает данные от датчика и обслуживает оборудование, которое может быть также аналоговым по своему происхождению. Примером подобного устройства может служить клапан с диапазоном открытия задвижки от 0 до 100%, управляемый через аналоговый выход контроллера 4-20 мА, или управление скоростью двигателя. Подобные применения называют также непрерывными приложениями, поскольку они обычно не имеют определенного начала или конца. Как только подобный алгоритм инициализируется, ПЛК должен поддерживать обслуживаемый процесс в "устойчивом" состоянии.
Плк сегодня
Технологии производства ПЛК постоянно развиваются в последнее время. Однако, следует отметить, что развитие ПЛК идет более медленно, чем в компьютерной технике, в связи с традиционно осторожным подходом к промышленным системам и более тщательной проверкой и отладкой используемого фирменного программного обеспечения контроллеров. Сегодняшний ПЛК - это более быстрое время сканирования, компактные системы ввода/вывода, стандартизированные средства программирования и специальные интерфейсы, позволяющие подключать нетрадиционные устройства автоматики непосредственно к контроллеру или объединять разное оборудование в единую систему управления. ПЛК могут не только связываться с другими управляющими системами, но также могут формировать отчет о функционировании, диагностировать свои собственные ошибки, а также ошибки в работе оборудования или процесса.
Для классификации современных ПЛК обычно используют количество входов/выходов, а также указывают некоторые конструктивные характеристики и типы приложений, в которых данный контроллер может использоваться. Нано- и микро-, немодульные мини-ПЛК (также известные как моноблочные) обычно имеют меньшую память и малое число входов/выходов в фиксированных конфигурациях. Модульные ПЛК имеют каркасы или стойки для установки в них многочисленных модулей ввода/вывода и могут использоваться для более сложных приложений.
Как правильно выбрать плк?
Выбор наиболее эффективного ПЛК для Вашего приложения зависит от множества факторов. Для начала неплохо иметь схему автоматизации машины или процесса. Схема поможет идентифицировать полевые устройства и физические требования к расположению аппаратуры. Со схемой Вы сможете определить количество аналоговых и/или дискретных устройств.
Как только требования к полевым устройствам и расположению аппаратуры будут определены, Вы сможете подобрать контроллер, который удовлетворит Ваши требования.
