- •Овременная классификация
- •Основные элементы
- •Принцип работы
- •Реимущества использования
- •Применение в промышленности
- •Правильная эксплуатация
- •Выбор циркуляционного насоса для системы отопления. Часть 4
- •Подбор характеристик циркуляционного насоса по рабочей точке, находящейся в зоне максимального кпд.
- •Последовательная работа центробежных насосов
- •Подобие центробежных насосов
- •Подобие центробежных насосов при определении ns
- •Обзор[править | править вики-текст]
- •Вредные последствия[править | править вики-текст]
- •Полезное применение[править | править вики-текст]
- •Применение в биомедицине[править | править вики-текст]
- •Лопастные насосы и винты судов[править | править вики-текст]
- •Лопастные насосы. Кавитация на стороне всасывания[править | править вики-текст]
- •Центробежные насосы. Кавитация в уплотнении рабочего колеса[править | править вики-текст]
- •Кавитация в двигателях[править | править вики-текст]
- •Предотвращение последствий[править | править вики-текст]
- •Другие области применения[править | править вики-текст]
- •Число кавитации[править | править вики-текст]
- •Гидравлический расчет простого трубопровода
- •Сортамент труб
- •Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов
- •Зависимость коэффициента гидравлического сопротивления от числа Рейнольдса и эквивалентной шероховатости труб
- •Основные формулы для ламинарного режима в трубах
- •Коэффициенты некоторых местных сопротивлений
- •Коэффициент сопротивления диафрагмы
- •Пример зависимости мощности n, к.П.Д. Η и напора h, развиваемого насосом, от расхода
- •Регулирование подачи центробежных насосов
- •Пластинчатые насосы
- •9. Автоматизация компрессорных установок
- •9.1. Регулирование производительности компрессорных установок
- •9.2. Автоматизация компрессорных агрегатов и станций
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Цели автоматизации[править | править вики-текст]
- •Задачи автоматизации и их решение[править | править вики-текст]
- •Принципы автоматизации процессов
- •Уровни автоматизации процессов
- •Промышленные контроллеры — мозг современной энергетики
- •Интегрированные системы на базе сикон с50
- •Распределённые системы на базе контроллера сикон тс65i
- •Будущее
- •Содержание
- •Уровни модели osi[править | править вики-текст]
- •Прикладной уровень[править | править вики-текст]
- •Уровень представления[править | править вики-текст]
- •Сеансовый уровень[править | править вики-текст]
- •Транспортный уровень[править | править вики-текст]
- •Сетевой уровень[править | править вики-текст]
- •Канальный уровень[править | править вики-текст]
- •Физический уровень[править | править вики-текст]
- •Соответствие модели osi и других моделей сетевого взаимодействия[править | править вики-текст]
- •Семейство tcp/ip[править | править вики-текст]
- •Семейство ipx/spx[править | править вики-текст]
- •Критика[править | править вики-текст]
- •Дискретный ввод/вывод в плк
- •Модули ввода
- •Модули вывода
- •Релейные выходные модули
- •Транзисторные выходные модули
- •Симисторные выходные модули
- •Процессорные модули производства ао "пик прогресс"
- •Процессорный модуль усо-ко
- •Процессорный модуль кмкс pm-vdx
- •Функциональные возможности промышленных контроллеров
- •Заметки для начинающего инженера
- •03. Программируемый логический контроллер (плк)
- •Области использования плк
- •Плк и как они работают
- •Дискретные приложения
- •Приложения для управления процессами
- •Плк сегодня
- •Как правильно выбрать плк?
- •Из чего выбирать
- •Централизованное и динамическое конфигурирование
- •Функциональные возможности PcVue
- •Иерархическая база данных и архивирование в субд
- •Интеграция PcVue с другими системами
- •IntraVue — мониторинг и обслуживание промышленных ip-устройств
- •Заключение
Гидравлический расчет простого трубопровода
Гидравлический расчет простого трубопровода производится с помощью уравнения Бернулли:
Здесь h1-2 – потери напора (энергии) на преодоление всех видов гидравлического сопротивления, приходящиеся на единицу веса движущейся жидкости.
h – потери напора на трение по длине потока,
hм – суммарные потери напора на местном сопротивлении Потери напора на трение по длине потока определяются по формуле Дарси-Вейсбаха
где L –длина трубопровода,
d -диаметр участка трубопровода,
v - средняя скорость течения жидкости,
-коэффициент гидравлического сопротивления, в общем случае зависящий от числа Рейнольдса (Re=v*d/ν), и относительной эквивалентной шероховатости труб (/d).
Значения эквивалентной шероховатости Δ внутренней поверхности различных труб представлены в таблице 2. А зависимости коэффициента гидравлического сопротивления λ от числа Re и относительной шероховатости Δ/d приведены в таблице 3.
Если режим движения ламинарный, то для труб некруглого сечения коэффициент гидравлического сопротивления определяется по частным для каждого случая формулам (табл. 4).
При развитом турбулентном течении с достаточной степенью точности при определении можно пользоваться формулами для круглой трубы с заменой диаметра d на 4 гидравлических радиуса потока Rг (d=4Rг)
Rг =/,
где – площадь «живого» сечения потока,
- «смоченный» его периметр (периметр «живого» сечения по контакту жидкость – твердое тело)
Потери напора в местных сопротивлениях определяются по формуле Вейсбаха
Где – коэффициент местного сопротивления, зависящий от конфигурации местного сопротивления и числа Рейнольдса.
При развитом турбулентном режиме = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв, т.е. такой длины прямого трубопровода, для которого h = hм. В этом случае потери напора в местных сопротивлениях учитываются тем, что к реальной длине трубопровода прибавляется сумма их эквивалентных длин
Lпр =L + Lэкв,
где Lпр – приведенная длина трубопровода.
Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.
Если движение жидкости в трубопроводе обеспечивается центробежным насосом, то для определения расхода в системе насос – трубопровод строится характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h1-2 + ∆z при z1< z2 и h1-2 - ∆z при z1>z2) накладывается на напорную характеристику насоса H=H(Q), которая приводится в паспортных данных насоса (см. рис.). Точка пересечения этих кривых указывает на максимально возможный расход в системе.
Сортамент труб
Таблица 1
Наружный диаметр dн, мм |
Внутренний диаметр dвн, мм |
Толщина стенки , мм |
Наружный диаметр dн, мм |
Внутренний диаметрdвн, мм |
Толщина стенки,мм |
1. Трубы стальные бесшовные общего назначения |
3, Трубы насосно-компрессорные
|
||||
14 |
10 |
2,0 |
А. Гладкие |
||
22 |
18 |
2,0 |
48,3 |
40,3 |
4,0 |
32 |
27 |
2,5 |
60,3 |
50,3 |
5,0 |
54 |
49 |
2,5 |
73,0 |
62,0 |
5,5 |
60 |
54 |
3,0 |
88,9 |
75,9 |
6,5 |
70 |
64 |
3,0 |
101,6 |
88,6 |
6,5 |
95 |
88 |
3,5 |
114,3 |
100,3 |
7,0 |
108 |
100 |
4,0 |
|
|
|
2. Трубы нефтепроводные и газопроводные |
Б. Трубы с высаженными концами |
||||
114 |
106 |
4,0 |
32,0 |
25,0 |
3,5 |
146 |
136 |
5,0 |
42,2 |
35,2 |
3,5 |
168 |
156 |
6,0 |
48,3 |
40,3 |
4,0 |
194 |
180 |
7,0 |
60,3 |
50,3 |
5,0 |
245 |
227 |
9,0 |
73,0 |
62,0 |
5,5 |
273 |
253 |
10,0 |
88,9 |
75,9 |
6,5 |
299 |
279 |
10,0 |
101,6 |
88,6 |
6,5 |
426 |
492 |
12,0 |
114,3 |
100,3 |
7,0 |
529 |
513 |
8,0 |
|
|
|
632 |
616 |
8,0 |
|
|
|
