ЗАКЛЮЧЕНИЕ
Одной из важнейших задач полупроводниковой электроники является увеличение рабочих частот, увеличение быстродействия полупроводниковых приборов, в том числе и интегральных микросхем.
В этом направлении достигнут значительный прогресс: максимальная частота генерации биполярных транзисторов достигла десятка гигагерц. Значения этого параметрабиполярныхтранзисторовужеблизко ктеоретическомупределу.
Основным фундаментальным физическим ограничением, определяющим теоретический предел быстродействия различных полупроводниковых приборов, является конечность времени релаксации заряда, т.е. времени установления электрической нейтральности различных частей структуры полупроводникового прибора. Время релаксации должно быть значительно меньше полупериода переменного сигнала. Это необходимо для того, чтобы за время изменения входного напряжения на биполярном транзисторе успела измениться высота потенциального барьера эмиттерного перехода, в полевом транзисторе – успело произойти изменение толщины канала, в варикапе – изменилась бы толщина p-n-перехода и т.д.
Максимальная концентрация примесей в базе диодов, биполярных транзисторов или в подложке полевых транзисторов ограничена сверху обычно зна-
чениями 1016...1017 см-3. Время релаксации заряда для таких концентраций при-
месей в кремнии 10-12…3·10-13 с.
Вторым фундаментальным ограничением быстродействия полупроводниковых приборов является конечность скоростей движения носителей заряда и соответственно определенное время, необходимое для отбора энергии постоянного электрического поля носителей заряда. Известно, что минимальное время изменения энергии электрона на величину kT:
где Emax – максимально допустимая напряженность электрического поля, выше которой наступает пробой;
Vmax – максимальная скорость дрейфа электронов.
Для кремния при Т=300 К, Emax=3·105 В/см, Vmax=107 В/см, tkT=0,9·10-14 c.
В большинстве полупроводниковых приборов процесс усиления – отбор энергии от постоянного электрического поля и передача части энергии переменному электрическому полю – происходит в p-n-переходе, где напряженность поля изменяется с координатой. Поэтому часть пути носитель заряда испытывает воздействие напряженности электрического поля, значительно мень-
ше Emax. То же самое можно сказать и о скорости носителей заряда. Итак, можно утверждать, что реальное время, необходимое для приобретения носителем заряда добавочной энергии в несколько kT, должно быть более 10-12 с.