- •1. История развития вычислительной техники.
- •2. Современное состояние и перспективы развития вычислительной техники.
- •3. Анатомия компьютера.
- •4.Классификация и виды информационных технологий.
- •5. Операционные системы: назначение, классификация.
- •6. Работа в современных операционных системах.
- •7. Элементы графического интерфейса Windows.
- •8. Сервисная программа Total Commander. Интерфейс.
- •Преимущества для пользователей
- •Основные рабочие операции
- •9. Языки и технологии программирования.
- •10. История развития языков программирования.
- •Сравнительная характеристика, назначение и возможности современных языков.
- •12. Технологии программирования.
- •13. Процедурное, объектно-ориентированное и логическое программирование.
- •14. Программное обеспечение.
- •15. Текстовый редактор ms Word.
- •16. Мs Word: правила и порядок форматирования абзацев, основные характеристики шрифтов.
- •17. Мs Word: списки перечислений (маркированные, нумерованные, многоуровневые).
- •18. Мs Word: создание таблицы, её структура и изменение, работа с ячейками таблицы.
- •19. Мs Word: рисование (автофигуры, объект Word Art)
- •20. Издательская система – PageMaker: возможности и назначение.
- •21. Основные понятия компьютерной графики.
- •22. Графические редакторы.
- •23. Способы хранения и обработки графической информации.
- •24. Редактор corel draw и его возможности.
- •25. Coreldraw. Инструменты панели графики.
- •26. Coreldraw. Заливка цветом и текстурой, градиентная заливка.
- •27. Coreldraw. Интерактивные эффекты: тень, прозрачность, деформация, отгибание, ореол.
- •28. Работа с графическим изображением в coreldraw.
- •29. Редактор adobephotoshop.
- •30. Adobephotoshop. Палитра инструментов: инструменты выделения и перемещения.
- •31. Adobephotoshop. Слои: типы слоев, операции над слоями, скрытие и показ слоя.
- •32. Электронные таблицы ms Excel.
- •33. Мs Excel.Относительная и абсолютная адресация ячеек.
- •34. Мs Excel. Функции: назначение и использование.
- •35. Мs Excel.Создание диаграмм и графиков.
- •36. Сервисные инструментальные средства: файловые менеджеры, архиваторы, электронные словари.
- •37. Системы математических вычислений Mathematica
- •38. Система подготовки презентаций.
- •39. Работа в ms PowerPoint.
- •40. Компьютерные сети.
- •41. Семиуровневая модель структуры протоколов связи.
- •42. Организационная структура Internet.
- •Протоколы Internet (tcp и udp). Основные сервисы Internet
- •Скриптовые языках программирования (Java, html и др).
- •Инструментальные средства создания web-серверов и web-сайтов.
- •Основы web-дизайна.
- •Системы управления базами данных.
- •Структура данных, модели данных, создание базы данных и таблиц.
- •Базы данных Access, sql Server и др.
- •Знакомство с основами языка sql и построением sql-запросов.
- •Методы и средства защиты информации.
- •Кодирование и декодирование информации.
- •Защита от несанкционированного доступа к данным.
- •Классы безопасности компьютерных систем. Электронная подпись
- •55 Организационно-правовые аспекты защиты информации и авторское право
- •Математические модели решения задач в различных предметных областях.
- •57 Модели, приводящие к необходимости численного дифференцирования и интегрирования функций
- •58 Основные методы и характеристики погрешности
- •59 Модели, описываемые обыкновенными дифференциальными уравнениями, методы решения
- •60 Оптимизация как заключительный этап вычислительного эксперимента.
- •61 Модели и постановки задач оптимизации в различных предметных областях
- •62 Методы минимизации функции одной пременной
- •63 Классификация методов минимизации функций многих переменных
- •64 Методы условной оптимизации
- •1 Линейное программирование (лп)
- •3 Прямые методы условной оптимизации
- •4 Методы штрафных функций
- •65 Понятие о методах решения вариационных задач
- •66 Сведение вариационной задачи к задаче минимизации функции многих перменных
- •67 Понятие об экспертных системах
- •68 Обзор и характеристики стандартных пакетов программ
1. История развития вычислительной техники.
Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки началось в 40-х годах нашего века, когда технической базой ВТ стала электроника, затем микроэлектроника, а основой для развития компьютеров (ЭВМ) - достижения в области искусственного интеллекта. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления. Первый в мире эскизный рисунок 13-разрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи.
Первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала "паскалина" ( француз-го ученого Блеза Паскаля) - 6-ти (или 8-ми) разрядное устройство, на зубчатых колесах, рассчит-ое на суммир-ие и вычитание десятичных чисел (1642 г.).Через 30 лет после "Паскалины" в 1673 г. появился "арифметический прибор" Готфрида Вильгельма Лейбница – 12-тиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. В цифровых электронных вычислительных машинах, появившихся более двух веков спустя, устройство, выполняющее арифметические операции (те же самые, что и "арифметический прибор" Лейбница), получило название арифметического. Позднее его стали называть арифметико-логическим.
Позднее,Чарльзом Беббиджем был разработан проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (1830-1846 гг.). Машина включала 5 устройств - арифметическое АУ, запоминающее ЗУ, управления, ввода, вывода (как и первые ЭВМ появившиеся 100 лет спустя). АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на 1000 50-разрядных чисел!). Для ввода данных и программы использовались перфокарты, но всю машину из-за ее громоздкости создать не удалось. Заставить такую махину работать можно было только с помощью паровой машины, что и намечал Беббидж.
В 1934 г. немецкий студент Конрад Цузе сделал (у себя дома) цифровую вычислит машину с программным управл-ем и с использованием - впервые в мире! - двоичной системы счисления. Она была двоичной, 22-х разрядной, с плавающей запятой, с памятью на 64 числа и все это на чисто механической (рычажной) основе! В том же 1937 г., когда заработала первая в мире двоичная машина, Джон Атанасов начал разработку специализированный компьютер, впервые в мире применив электронные лампы (300 ламп). И только в 1946 г. когда появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д.Мочли и П.Эккертом. Однако машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти. Коренной перелом в области технологии обработки информации начался после 2 мировой войны. В ЭВМ 1-го поколения основными элементами были электронные лампы. Главный недостаток машин 1 и 2го поколений - они собирались из большого числа компонент, соедин-х м/ду собой.
В ЭВМ 3-го поколения (с сер 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, сод-е в себе 1000-и транзисторов и др элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к сниижению размеров, энергопотребления и стоимости (до 50 тысяч долларов). История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная америкнская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей. СОВРЕМЕННЫЕ ЭВМ - ЭТО ЭВМ 4-ГО ПОКОЛЕНИЯ, В КОТ ИСП-СЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ. 90-ые годы ХХ века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир.
