- •Учебное издание
- •Содержание
- •Введение
- •Лабораторная работа № 1. Изучение параметров микроклимата в помещениях, методов и средств для их измерения и улучшения
- •1. Цели и задачи лабораторной работы
- •2. Оборудование и приборы
- •3. Краткие теоретические сведения
- •3.1. Параметры микроклимата в помещениях, их влияние на людей
- •3.2. Методы и приборы для измерения параметров микроклимата
- •3.3. Методы и средства для улучшения параметров микроклимата
- •3.3.1. Необходимость использовать лучший мировой опыт комплексного улучшения микроклимата и охраны труда
- •3.3.2. Повышение относительной влажности воздуха в помещениях
- •3.3.3. Уменьшение лучистого теплообмена человека с окнами
- •3.3.4. Использование ветра для улучшения микроклимата
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 2. Изучение освещённости в помещениях и современных осветительных приборов
- •3.2. Требования к организации освещения помещений
- •3.3. Применяемые приборы
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 3. Изучение методов и средств для замера концентрации пыли в воздухе и защиты от неё
- •3.2. Пожароопасные и взрывоопасные классы пыли
- •3.3. Методы и средства для уменьшения запылённости
- •3.4. Методы и приборы для измерения концентрации пыли
- •3.5. Средства индивидуальной защиты органов дыхания от пыли
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 4. Шум, вибрация и защита от них
- •1. Цели и задачи лабораторной работы
- •2. Оборудование
- •3. Краткие теоретические сведения
- •3.1. Виды и причины шума, методы и средства защиты от него
- •3.2. Виды вибрации, методы и средства защиты от неё
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 5. Методы и средства обеспечения электробезопасности
- •3.2. Условия для поражения электрическим током
- •3.3. Методы и средства защиты от поражения электрическим током в электроустановках
- •3.4. Молниезащита
- •3.5. Измерение сопротивления заземления
- •4. Порядок выполнения работы
- •Метод непосредственного измерения сопротивления заземления прибором м-416.
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 6. Причины пожаров и способы их предотвращения. Подбор и использование первичных средств пожаротушения
- •3.1.1. Пожаробезопасность электропроводки
- •3.1.2. Пожаробезопасность при использовании бытовых приборов
- •3.2. Первичные средства пожаротушения и их использование
- •3.2.1. Огнегасительные средства и их свойства
- •3.2.2. Первичные средства пожаротушения и их применение
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Лабораторная работа № 7. Техника безопасности при работе со средствами информационно-коммуникационных технологий
- •1. Цели и задачи лабораторной работы
- •2. Оборудование
- •3. Краткие теоретические сведения
- •4. Порядок выполнения работы
- •5. Требования к оформлению отчёта о работе
- •6. Контрольные вопросы
- •Литература и информационные ресурсы
- •4. Гост 12.1.012-2004 ссбт. Вибрационная безопасность. Общие требования. Url: http://docs.Cntd.Ru/document/1200059881 (дата обращения: 24.06.2015).
- •5. Гост исо 8041-2006. Вибрация. Воздействие вибрации на человека. Средства измерений. Url: http://docs.Cntd.Ru/document/gost-iso-8041-2006 (дата обращения: 18.06.2015).
- •График зависимости числа делений шкалы анемометра в секунду
- •Нормы наименьшей освещённости в помещениях образовательных учреждений
- •Величина светового потока люминесцентных ламп
- •Величина светового потока ламп накаливания
3.2. Условия для поражения электрическим током
Поражение электрическим током происходит в результате прямого или косвенного прикосновения, а также недопустимого приближения человека к металлическим частям, находящимся или оказавшимся под напряжением.
Прямым называется прикосновение к неизолированным токоведущим частям, нормально находящимся под напряжением (оголенные провода, шины, клеммы, контакты и т. п.). Прикосновения к нетоковедущим, но токопроводяшим (металлическим) частям оборудования, инструмента или инженерных сооружений, оказавшихся под напряжением, относятся к косвенным.
Прямые прикосновения случаются, как правило, по вине человека – самого пострадавшего либо должностного лица, не обеспечившего безопасность. Косвенные прикосновения происходят из-за пробоя изоляции по тем или иным причинам, не связанным с действиями пострадавшего, и могут рассматриваться как отказ техники.
Условия поражения электрическим током при прямом и косвенном прикосновениях определяются видом и параметрами электрической сети, типом прикосновения, применяемыми способом и средствами защиты, классом опасности помещения (условий работ) и степенью изоляции человека от земли (под землёй понимается точка почвы с нулевым потенциалом).
Прямые прикосновения к токоведущим частям могут быть однополюсными и двухполюсными.
При однополюсном прикосновении человек, стоящий на земле, касается рукой или головой неизолированных токоведущих частей. Ток протекает по пути «рука – нога» или «голова – нога».
При двухполюсном прикосновении человек, изолированный от земли, двумя руками или головой и одной рукой касается неизолированных проводов разных фаз или фазного и нулевого провода.
Изоляцию человека от земли может обеспечить сопротивление пола и обуви. При этом ток проходит по пути «рука – рука» или «голова – рука».
Наиболее опасны двухполюсные прикосновения во всех видах сетей, при которых человек попадает под линейное напряжение.
Однополюсные прикосновения во всех сетях с глухозаземлённой нейтралью также опасны. В сетях с изолированной нейтралью вследствие очень большого сопротивления между фазами и землёй величина тока, проходящего через человека, при однополюсном прикосновении будет малой, равной величине тока утечки, и поражения не будет.
Косвенные прикосновения являются однополюсными. По опасности поражения они соответствуют прямым однополюсным прикосновениям.
Величина тока, протекающего через человека при косвенном прикосновении, зависит от напряжения прикосновения. Для человека, стоящего на земле и касающегося заземлённого оборудования, корпус которого оказался под напряжением, таким напряжением прикосновения будет являться разность потенциалов руки и ноги.
Потенциал руки Фр равен фазному потенциалу, так как в результате пробоя изоляции фазы появилось напряжение на корпусе. Потенциал ноги Фн определяется потенциалом точки грунта в поле растекания тока в земле, на которой находится человек.
Тогда напряжение прикосновения Unp, В, определяют по формуле
Uпp = Фр – Фн = Iзr(1/r–1/c)/2p, (1)
где Iз – ток, стекающий через заземлитель, А; r – удельное сопротивление грунта, Ом·м; r – радиус заземлителя, м; c – расстояние от человека, стоящего на грунте, до заземлителя, м.
Напряжение прикосновения по мере удаления от заземлителя увеличивается и на расстоянии более 20 метров становится равным фазному напряжению сети. Поражение человека электрическим током может произойти также вследствие его попадания под шаговое напряжение. В этом случае ток протекает в теле человека по пути «нога – нога». Напряжением шага называется разность потенциалов между двумя точками земли, на которые одновременно опирается человек при перемещении в поле растекания тока в земле.
При пробое изоляции на корпус установки, присоединённой к заземлителю, обрыве и падении находящегося под напряжением фазного провода на землю потенциалы земной поверхности или токопроводящего пола приобретают повышенные значения. Наибольший потенциал, равный потенциалу заземлителя или фазы, имеет точка земли, расположенная непосредственно над заземлителем или в месте касания упавшего провода с землёй. По мере удаления от этой точки в любую сторону потенциалы точек земной поверхности снижаются по закону, близкому к гиперболическому.
На расстоянии 20 метров от заземлителя зона растекания тока заканчивается – потенциалы земли имеют нулевое значение.
Человек, двигаясь от периметра зоны растекания к центру, одновременно касается двух точек земли с разными потенциалами. Напряжение шага Uш, В, определяется по формуле (2):
Uш = Фза/r (c2 + аc), (2)
где Фз – потенциал заземлителя (провода); а – ширина шага, м (для взрослого человека – 0,8 м); r – радиус заземлителя (провода), м; c – расстояние от заземлителя до ближней точки касания человеком поверхности земли, м.
Напряжение шага зависит от трёх факторов: потенциала заземлителя; расстояния от человека до заземлителя (при удалении от заземлителя напряжение уменьшается, обращаясь в нуль за пределами зоны растекания) и ширины шага (чем она больше, тем больше напряжение). Опасность воздействия напряжения шага на человека заключается в том, что при протекании тока возникают судороги мышц ног, которые могут привести к падению человека на землю. При этом изменяется путь тока в теле (возникает большая петля) и увеличивается напряжение шага из-за увеличения расстояния между точками контакта человека с землёй. Эти факторы могут вызвать тяжёлое поражение организма электрическим током.
Все помещения, в которых используются электроприборы и производятся работы, в отношении опасности поражения людей электрическим током подразделяются на следующие категории: без повышенной опасности; с повышенной опасностью; особо опасные.
Для помещений с повышенной опасностью характерно наличие одного из следующих признаков:
– сырости, когда относительная влажность воздуха длительное время превышает 75 %;
– длительно высокой (более 30 °С) температуры;
– токопроводящей пыли, если по условиям производства выделяется технологическая пыль, снижающая сопротивление изоляции проводов, электрических машин и других электроприёмников; токопроводящего пола (земляного, металлического, железобетонного и др.);
– возможности одновременного касания работника металличес-ких корпусов оборудования и заземлённых металлоконструкций.
Особо опасные помещения характеризуются особой сыростью, когда влажность воздуха близка к 100 %, а потолок, стены, пол и поверхности оборудования покрыты влагой; химически активной средой, которая разрушает изоляцию проводов и электрооборудования; наличием двух и более факторов повышенной опасности.
Работы вне помещений (на открытом воздухе, под навесом, за сетчатым ограждением) приравнивают по опасности поражением электрическим током к работам в особо опасных помещениях. К категории особо опасных относят и работы с электрооборудованием (электроинструментом) в металлических замкнутых пространствах с ограниченной возможностью выхода (баки большой ёмкости, канализационные и водопроводные колодцы; смотровые канавы на автопредприятиях).
Степень изоляции человека от земли определяется переходным сопротивлением от тела к земле, включающим сопротивление обуви и пола. Сопротивление обычной рабочей обуви, которая в большинстве случаев загрязнена токопроводящими веществами, имеет металлические крепители подошвы или внедренные в неё частицы металлической стружки, мало и почти не снижает ток замыкания на землю. Электрическое сопротивление пола зависит от материала покрытия и его состояния. Например, сухое деревянное покрытие имеет сопротивление до 15 МОм (15 –106 Ом), а увлажнённое – в 1000 раз меньше; бетонный пол в неотапливаемых помещениях с повышенной влажностью – до 300 Ом; железобетонный пол с выступающей армирующей сеткой или бетонный, загрязнённый охлаждающей жидкостью и металлической стружкой, – всего 8 – 90 Ом.
