Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб робота Однофакторна лінійна регресія.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.01 Mб
Скачать

Лабораторна робота №2 Тема: Побудова та аналіз однофакторної нелінійної моделі залежності між фактором та показником.

Мета заняття: Задана вибірка, яка отримана для показника Y і фактора X. Необхідно:

  • на основі статистичних даних показника Y і фактора X знайти оцінки параметрів лінії регресії, припускаючи, що стохастична залежність між фактором X і показником Y має вигляд: Y=a + b;

  • перевірити адекватність отриманої моделі статистичним даним, використовуючи критерій Фішера з надійністю Р=0,95;

  • у випадку адекватності отриманої моделі експериментальним даним з заданою надійністю знайти:

- з надійністю Р=0,95 довірчу зону базисних даних;

- точкову оцінку прогнозу;

- з надійністю Р=0,95 інтервальну оцінку прогнозу;

- оцінки коефіцієнтів еластичності для базисних значень і прогнозу;

- оцінку індексу кореляції.

  • Побудувати графіки:

- фактичних даних;

- лінії регресії й довірчу зону;

- лінії еластичності.

Хід роботи

  1. Завантажити програму excel.

  2. Сформувати таблицю вихідних даних, заповнивши діапазон комірок А3:С:15 (рис. 1).

  3. Виконати розрахунки:

- у комірці В16 за допомогою вбудованої функції СЧЕТЗ знайти об’єм вибірки n.

- розрахувати значення квадратного кореня з х (x1i= ), використавши при цьому вбудовану функцію КОРЕНЬ, обчислення розмістити в діапазоні D3:D15 (застосувати процедуру автозаполнення див. лаб.1);

- розрахувати середнє значення величин y, x1, використовуючи вбудовану функцію СРЗНАЧ, результати розмістити у комірки D19 й D18 відповідно;

- розрахувати значення добутку y1i1i, ввівши в комірку Е3 формулу Е3:=B3*D3; для одержання інших розрахункових значень, скопіювати формулу третього рядка в інші комірки блоку Е4:Е15;

- розрахувати значення х1i^2, увівши в комірку F3 формулу F3:=D3^2; для одержання інших розрахункових значень, скопіювати формулу третього рядка в інші комірки блоку F4:F15;

- розрахувати суму величин y, x, х1= , y111, х1^2, використовуючи вбудовану функцію СУММ або Автосумму, результати розмістити у комірки В17,С17,D17,Е17 й F17 відповідно.

  1. Для оцінки параметра , де , ввести в комірку В18 формулу В18:= (B16*E17-B17*D17)/(B16*F17-D17^2).

  1. Для оцінки параметра , ввести в комірку В19 формулу В19:= D19-B18*D18.

  2. Записати модель у блоці А22:F22.

  3. Обчислити розрахункове значення показника yрозр по формулі . Для цього у комірку G3 ввести формулу G3:= $B$18*D3+$B$19, використовуючи абсолютне посилання для комірок B18 й B19. Використовуючи операцію автозаполнення, скопіювати отриману формулу у діапазон G4:G15.

  4. Розрахувати суму величин yрозр, використовуючи вбудовану функцію СУММ або Автосумму, результат розмістити у комірці G17.

Так як математичне очікування відхилень фактичних даних від розрахункових дорівнює нулю, то при правильному виконанні розрахунків значення комірок В17 й G17 повинні збігатися.

  1. Для визначення розрахункового значення критерію Фішера, оцінки довірчої зони базисних даних, оцінки довірчого інтервалу й оцінки прогнозу обчислити значення , , і розмістити їх відповідно у блоках Н3:Н15, I3:I15 й J3:J15, а їх суми у блоці Н17:J17 (формули ввести самостійно).

  2. Обчислити значення (де m – число факторів моделі, тобто для нашого випадку m=1), ввівши у комірку D20 формулу D20:= КОРЕНЬ(H17/(B16-2)).

  3. У комірку I20 внести табличне значення t(0,95;11)=2,18 (табличне значення критерію Стьюдента, можна обчислити використовуючи вбудовану функцію СТЬЮДРАСПОБР (ймовірність =0,05, число ступенів вільності k=n-2=13-2=11)).

  4. Обчислити значення ∆ (i=1,…,n), ввівши в комірку K3 формулу K3:= I$20*D$20*КОРЕНЬ(1/B$16+J3/J$17), використовуючи абсолютне посилання для комірок I20, D20, B16 й J17. Використовуючи операцію автозаполнення, скопіювати отриману формулу у діапазон К4:К15.

  5. Обчислити значення і розмістити їх відповідно у блоках L3:L15 і М3:М15 (формули ввести самостійно).

  6. Розрахувати коефіцієнт еластичності за формулою: , ввівши у комірку N3 формулу N3: =$B$18*D3/(2*G3), де використано абсолютне посилання для комірки В18. Скопіювати отриману формулу у діапазон N4:N15.

  7. Обчислити коефіцієнт кореляції між x1 та y, використовуючи вбудовану функцію КОРРЕЛ, розмістивши результат обчислень у комірці L18.

  8. Обчислити коефіцієнт детермінації R2 ( у випадку парної регресії він збігається із квадратом коефіцієнта кореляції), ввівши в комірку N18 формулу N18:= L18^2.

Для перевірки адекватності (тобто ступеня відповідності побудованого рівняння регресії наявним статистичним даним) застосувати критерій Фішера:

  1. Обчислити розрахункове значення критерію Фішера за формулою: . Для цього ввести у комірку L20 формулу L20: = N18/(1-N18)*12.

  2. У комірці L19 обчислимо табличне значення критерію Фішера, використовуючи вбудовану функцію FРАСПОБР (ймовірність =0,05, число ступенів вільності k1=m=1 й k2=n-m-1=13-2=11).

  3. Порівнявши отримані результати, можна зробити висновок про адекватність моделі експериментальним даним.

Проведемо прогнозування за отриманою моделью.

  1. З начення прогнозу фактору занести у комірку С16, у комірці D16 обчислюється значення Х1 прогнозне, а в комірці G16 - Y прогнозне. Оцінку довірчого пів інтервалу для прогнозу обчислимо у комірці К16, а межі довірчого інтервалу перебувають відповідно у комірках L16 і М16.

  2. П ісля проведених дій робочий лист EXEL виглядає як на рис.1.

Для наочного уявлення розрахунків побудувати графіки статистичних даних, довірчого інтервалу для базисних даних і прогнозу, а також графік еластичності (див. лаб.1).

  1. Проаналізувати отримані графіки (рис.2).

  2. Підвести підсумки лабораторної роботи і зробити висновки.

  3. Зберегти книгу у своїй робочій папці під ім'ям Лаб.2.