- •2.Общие требования к тим.
- •3. Проблемы теплопотерь в зданиях. Пути их снижения.
- •4. Понятие о теплопередаче. Теплопроводность.
- •5. Факторы, определяющие теплопроводность материала.
- •7. Основные виды переноса тепла.
- •8. Виды пористости и соотношения между ними в различных видах пористых структур тим.
- •9. Классификация тим по различным признакам.
- •10. Сопротивление теплопередаче в ограждающих конструкциях. Толщина теплоизоляционного слоя в ограждающих конструкциях.
- •11. Основные функциональные свойства тим, дать определение.
- •12.Основные строительно-эксплуатационные свойства тим.
- •13. Механические свойства; 14. Показатели, характеризующие тим по отношению к температуре; 15. Показатели, характеризующие тим по отношению к воде.
- •14.Отношение теплоизоляционных материалов к действию высоких температур
- •16. Формирование оптимальной ячеистой структуры тим.
- •17. Формирование оптимальной волокнистой структуры тим.
- •18. Формирование оптимальной зернистой структуры тим.
- •19. Способы поризации при получении тим.
- •20. Виды неорганических тим(волокнистые, ячеистые, зернистые). Примеры
- •4. Материалы на основе вспученного жидкого стекла
- •21. Виды органических тим(волокнистые, ячеистые). Примеры
- •22. Виды минерального волокна.
- •23.Минвата. Сырье. Требования к ним.
- •25.Понятие модули кислотности, основности и вязкости. Принципы расчета состава шихты для минваты.
- •26.Основные свойства минеральной и стеклянной ваты.
- •27.Типы изделий из минваты и стекловаты.
- •28.Силикатные расплавы для получения минваты. Основные свойства силикатных расплавов. Влияние химического состава на свойства.
- •29.Физико-химические основы получения силикатных расплавов. Печи для получения силикатных расплавов.
- •30.Способы переработки силикатного расплава в волокно.
- •31.Камеры волокноосаждения при производстве минеральной ваты.
- •32.Связующие вещества для производства изделий из минваты и стекловаты. Требования к ним.
- •33.Способы нанесения связующее на минеральное и стеклянное волокно
- •34.Конвейерная технология получения минватных и стекловатных изделий.
- •35.Периодические и непрерывные способы получения плит повышенной жесткости.
- •36.Свойство минераловатных плит повышенной жесткости гост 22950-95
- •38.Виды и свойства ячеистого стекла. Сырье для производства.
- •39.Одно- и двухстадийная технология получения ячеистого стекла
- •40.Классификация материалов на основе вспученного жидкого стекла. Сырье.
- •42. Виды изделий из вспученного жидкого стекла. Технология получения композиционных материалов.
- •44. Фибролит. Свойства. Сырье. Технология получения цементного фибролита.
- •45. Торфяные тим. Сырье. Производство торфоплит. Блоки Геокар.
- •46.Классификация газонаполненных пластмасс.
- •47. Механизмы газообразования в полимерных тим.
- •48. Заливочная технология при производстве пенопластов на основе термореактивных полимеров.
- •49. Особенности сырья и технология при производстве пенополистирола различными способами.
- •50. Сравнительные свойства различных видов пенополистирола. (полученных разными способами).
- •51. Производство пенополистирола беспрессовым методом.
- •52. Производство пенополистирола прессовым методом.
- •53. Производство пенополистирола экструзионным методом.
- •54. Пенопласты на основе пвх. Виды. Свойства.
- •55. Ососбенности производства эластичного и жесткого пвх.
- •56.Пенопласты на основе полиэтилена. Технология, виды, свойства.
- •58. Свойства пенополиуретана. Сырьё, процесс образования ппу.
- •59. Технология получения эластичного и жёсткого пенополиуретана.
- •60.Тп трубопроводов и промышленного оборудования. Основные требования.
- •61.Пенопласты на основе новолачных и резольных формальдегидных смол.
- •1. На основе новолачных смол (твердые вещества, кислая среда)
- •2. На основе резольных смол(жидкость, щелочная среда)
- •62. Карбамидные пенопласты. Сырьё. Технология производства пеноизола.
- •63. Эпоксидные пенопласты.
- •64.Кремнийорганические пенопласты.
- •65.Сотопласты. Основные виды сырья. Особенности свойств сотопластов.
- •66.Методы изготовления сотопластов.
- •67.Асбестосодержащие тим.
- •69.Жаростойкие волокнистые тим.
- •70.Классификация акустических материалов.
- •71.Механизм звукопоглощения и звукоизоляции.
- •72.Виды пор в акустических материалах.
- •73.Формирование оптимальной пористой структуры акустических материалов.
- •74.Виды неорганических и органических акустических изделий
- •75.Акустические плиты на крахмальном связуючем.
1.ТИМ. Определение. ТИМ-строймат предназнач. для создания теплоизоляции констр. зд. и сооруж., пром. установок, трубопроводов, холодильников, транспортных средств. Они характеризуются малой теплопроводностью. Это те сторймат которые имеют коэф. теплопроводности менее 0,175 и плотность менее 600 кг/м3.
Материалы: 1)Минватные, стекловатные-65%; 2)Пенопласты-25%; 3)Остальные (ячеистые бетоны, древес. сырьё и др)-10%.
2.Общие требования к тим.
1. Плотность <600 кг/м3
2. Теплопроводность <0,175 Вт/м*К
3.Теплоизол. матер.должны обладать стабильными физ-мех свойствами (терм. стойкость, температуростойкость, огнеупорность, коррозионная стойкость)
4.Должны иметь нормированную влажность.
5.Не должны выделять токсик. вещества и пыли в количестве превышающие ПДК.
3. Проблемы теплопотерь в зданиях. Пути их снижения.
Через ограждающие конструкции отапливаемых зданий уходит в атмосферу тепловая энергия, для производства которой сжигается много топлива. Чем хуже теплоизоляционные качества ограждений, тем больше нужно сжечь топлива в котлах. Отапливать плохо изолированный дом это все равно, что выливать дорогое топливо на улицу. Количество тепла и соответствующего ему топлива, теряемого через стены, окна, пол и потолок, в хорошо теплоизолированном доме на 46 % меньше, чем с привычными ограждающими конструкциями. Для утепления существует ряд материалов. Среди них основные пенополистирол и минеральная вата. Но эти материалы крепятся на стены в комплексе с множеством других компонентов. Производители сухих строительных смесей предлагают несколько систем теплоизоляции с плитами из пенополистирола и минеральной ваты.
C целью оптимизации огражд. конструкции по термическому сопротивлению, материалоёмкости и экономическому фактору необходимо в каждом конкретном случае производить теплотехнический расчёт ограждений. Расчет теплопотерь является важнейшим этапом проектирования систем отопления. Для определения тепловой мощности, покрывающей максимальную нагрузку на систему отопления, необходимо знать теплопотери здания в самую суровую расчетную часть холодного периода года. Для решения вопроса о соответствии уровня теплопотребления системой отопления здания современным требованиям, особенно учитывая проблему энергосбережения, необходимо определить теплопотери здания за весь отопительный период.
При выборе схемы расчёта учитывают число слоёв, составляющих конструкцию, форму конструкции, характеристик материалов, из которых она выполнена, и температурный градиент.
Для расчёта существуют ряд формул: 1)Теплопроводность конструкций Q=Fx*дельтаt*1/R;
2) Ro = 1 / αв + Rк + 1 /αн – сопротивление теплопередаче
Roтр = n *(tв - tн) / Δtн * αв – требуемое сопротивление теплопередаче
4. Понятие о теплопередаче. Теплопроводность.
Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики.
Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.
Способность вещества проводить тепло характеризуется коэффициентом теплопроводности (удельной теплопроводностью). Численно эта характеристика равна количеству теплоты, проходящей через образец материала толщиной 1 м, площадью 1 м2, за единицу времени (секунду) при единичном температурном градиенте.
Основной закон теплопроводностью сформулирован Фурьер: плотность теплового потока пропорциональна градиенту температуры Q=λFgradt
