
- •1) Понятие жидкости. Реальная и идеальная жидкости
- •2) Метод гидравлических исследований.
- •3) Силы, действующие на жидкость. Понятие давления
- •4) Основные свойства жидкостей
- •5) Гидростатическое давление и его свойства
- •6) Уравнение равновесия
- •7) Абсолютное и избыточное (манометрическое) давление. Барометры и манометры
- •8) Вакуум. Пьезометры и вакуумметры
- •9) Основное уравнение гидростатики. Потенциальная удельная энергия жидкости
- •10) Потенциальный (пьезометрический) напор.
- •11) Силы давления на плоские и кривые поверхности.
- •12) Понятие о движении жидкости как непрерывной деформации сплошной материальной среды.
- •13) Установившееся и неустановившееся движение жидкости. Напорное и безнапорное течение.
- •14) Линии токов жидкости и вихревые линии. Плавно и резко изменяющееся движение.
- •15) Элементарная струйка, поток жидкости, живое сечение. Гидравлический радиус, расход и средняя скорость.
- •16) Уравнение неразрывности. Понятие расхода.
- •17) Распределение сил в сплошной среде. Объемные и поверхностные силы.
- •18) Уравнение Бернулли для установившегося движения жидкости.
- •19) Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •20) Полный (гидродинамический) напор.
- •22) Числа Рейнольдса, Фруда, Эйлера, Вебера
- •23) Понятие о гидравлических сопротивлениях, виды потерь напора (местные и по длине).
- •24) Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси.
- •29) Основное уравнение равномерного движения.
- •26) Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса.
- •28) Потери напоры по длине при ламинарном равномерном движении жидкости.
- •29) Распределение скоростей по живому сечению в цилиндрической трубе при ламинарном режиме. Коэффициент Дарси при ламинарном движении.
- •30) Потери напора при турбулентном равномерном движении жидкости
- •30. Полуэмпирические теории турбулентности.
- •32) Коэффициент Дарси при турбулентном движении жидкости, экспериментальные методы его определения.
- •33 График Никурадзе.
- •34) Местные сопротивления, основные их виды.
- •Обьемные гидромашины.
- •1. Понятие объемной гидромашины. Насосы, гидродвигатели.
- •2.Принципиальные схемы объемных гидромашин (огм).
- •4.Виды возвратно-поступательных и роторных гидромашин
- •5, 6 Основные признаки роторных гидромашин. Основные термины и их определения
- •7. Величины, характеризующие рабочий процесс огм: подача (расход), рабочий объем, давление, мощность, кпд, частота вращения, крутящий момент
- •8. Классификация, конструктивные схемы и принцип действия огм
- •9. Шестеренные насосы с внешним и внутренним зацеплением
- •10. Винтовые машины. Шиберные (пластинчатые) гидромашины однократного и многократного действия
- •11.Радиально-поршневые гидромашины
- •12.Аксиально-поршневые гидромашины, основные их схемы
- •13 Лопастные гидромашины (центробежный насос)
- •4.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
- •5.Сравнение способов регулирования гидроприводов
- •6.Дроссельный способ регулирования огп с установкой дросселя на входе в гидродвигатель, на выходе из гидродвигателя и параллельно гидродвигателю
- •8) Статические характеристики объемного гидропривода с дроссельным регулированием.
- •62) Энергетические характеристики гидропривода.
- •10,11) Методы измерения параметров объемных гидроприводов. Измерение давления, расхода, температуры рабочих сред, частоты вращения и крутящего момента.
- •2.1. Измерение давления
4.Объемное регулирование скорости выходного звена гидропривода. Дроссельное регулирование скорости выходного звена гидропривода при последовательном и параллельном включении дросселя.
Дроссельное регулирование гидропривода при последовательном включении дросселя. Последовательное включение дросселя может быть осуществлено тремя способами: дроссель включают на входе в гидродвигатель, на выходе из него и на входе и выходе одновременно (рис. 4.7).
В приведенных схемах: насос 1 - нерегулируемый; гидроцилиндр 2 - с двусторонним штоком; распределитель 3 на схемах а и б - двухпозиционный, на схеме в - трехпозиционный; клапан 4 в данном примере является переливным; дроссель 5 (дросселирующий распределитель на рис. 4.7, в) служит для регулирования скорости перемещения поршня.
При полном открытии дросселя скорость поршня максимальна. При уменьшении открытия давление перед дросселем повышается, клапан 4 приоткрывается и пропускает часть подачи насоса на слив. Скорость поршня при этом снижается. При полном закрытии дросселя вся подача насоса идет через клапан и скорость рабочего органа равна нулю. При постоянном открытии дросселя и увеличении преодолеваемой нагрузки, т.е. силы F, давление насоса возрастает, расход через клапан увеличивается, а скорость поршня уменьшается.
скорость поршня выражается следующей зависимостью:
.Скорость
поршня не зависит от расположения
дросселя относительно гидродвигателя
(на входе в него или на выходе).
|
КПД гидропривода при последовательном включении дросселя
Полный
КПД регулируемого гидропривода равен
произведению КПД насоса, КПД процесса
управления и КПД гидродвигателя.
.
Дроссельное регулирование гидропривода при параллельном включении дросселя
На рис. 4.9 представлена схема объемного гидропривода при включении регулирующего дросселя параллельно гидродвигателю. В точке М поток рабочей жидкости, забираемой из бака 6 насосом 1, разветвляется: одна его часть через распределитель 3 направляется в гидроцилиндр 2, а другая - в регулирующий дроссель 5. Клапан 4 в данном случае является предохранительным. Он открывается лишь в случае чрезмерного повышения давления в системе.
При полном закрытии дросселя скорость наибольшая, а при полном его открытии - уменьшается до нуля или до минимального значения в зависимости от нагрузки F.
|
На рис. 4.10 показаны нагрузочные характеристики гидропривода при его регулировании параллельно включенным дросселем.
|
,
а КПД процесса управления
.
При отсутствии потерь давления в распределителе и гидролиниях pг=pн КПД процесса управления равен
Таким образом, в рассмотренном случае КПД процесса управления однозначно определяется относительным расходом жидкости через дроссель, т.е. степенью его открытия.