- •2. Взрывозащищенное электрооборудование
- •3. Выбор электрооборудования
- •1.1 Основные и дополнительные показатели качества электроэнергии
- •1.2. Отклонение частоты и причины его возникновения
- •1.3. Отклонение напряжения
- •1.4. Колебания напряжения
- •4.4.2. Электромагнитная совместимость
- •1.5. Несинусоидальность напряжения
- •1.6. Несимметрия напряжения
- •1.7. Провал напряжения
- •1.8. Импульсное напряжение
- •1.9. Временное перенапряжение
- •Средства защиты от поражения током
1.1 Основные и дополнительные показатели качества электроэнергии
ГОСТ 13109-99 устанавливает показатели и нормы качества электрической энергии (КЭ) в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей, или приемники электрической энергии (точки общего присоединения - ТОП).
Этот ГОСТ устанавливает 11 основных показателей качества электроэнергии (ПКЭ):
1) отклонение частоты δf;
2) установившееся отклонение напряжения δUу;
3) размах изменения напряжения δU1
4) дозу фликера (мерцания или колебания) Рt;
5) коэффициент искажения синусоидальности кривой напряжения КU
6) коэффициент п-й гармонической составляющей напряжения КU(n)
7) коэффициент несимметрии напряжений по обратной последовательности К2U',
8) коэффициент несимметрии напряжений по нулевой последовательности К0U;
9) глубину и длительность провала напряжения δUn , ∆tn;
10) импульсное напряжение Uимп;
11) коэффициент временного перенапряжения КлерU.
При определении значений некоторых показателей КЭ используют следующие вспомогательные параметры электрической энергии:
1) частоту повторения изменений напряжения FδUt
2) интервал между изменениями напряжения ∆ti, ti + 1
3) глубину провала напряжения δUn;
4) частота появления провалов напряжения Fn.
5) длительность импульса по уровню 0,5 его амплитуды ∆tимп0,5;
6) длительность временного перенапряжения ∆tпер U
Установлены два вида норм ПКЭ: нормально допустимые (норм.) и предельно допустимые (пред.)
1.2. Отклонение частоты и причины его возникновения
Отклонение частоты в электрической системе, Гц, характеризует разность между действительным и номинальным значениями частоты переменного тока в системе электроснабжения и определяется по выражению
δf = f - fном (1)
Допустимые нормы по отклонению частоты составляют
δfнорм= ± 0,2 Гц, δfпред =± 0,4 Гц
Частота переменного тока в электрической системе определяется скоростью вращения генераторов электростанций. Номинальное значение частоты в ЕЭС России 50 Гц в электрической системе может быть обеспечено при условии наличия резерва активной мощности. В каждый момент времени в электрической системе должно забыть обеспечено равенство (баланс) между мощностью генераторов электростанций и мощностью, потребляемой нагрузкой с учетом потерь мощности на передачу в электрической сети . Ввод резервной мощности возможен в системе за счет дополнительного расхода энергоносителя турбин электростанций.
1.3. Отклонение напряжения
Отклонение напряжения характеризуется показателем установившегося отклонения текущего значения напряжения С/ от номинального значения С/ном:
(2)
Отклонение напряжения обусловлено изменением потерь напряжения (см. гл. 12), вызываемых изменением мощностей нагрузок. Отклонение напряжения нормируется на выводах приемников электрической энергии:
(3)
1.4. Колебания напряжения
Колебания напряжения характеризуются размахом изменения напряжения δU1, , частотой повторения изменений напряжения FδUt, интервалом между изменениями напряжения ∆ti, ti + 1 , дозой фликера Рt.
Источниками колебаний напряжения являются потребители электроэнергии с резкопеременным графиком потребления мощности (особенно реактивной). К ним относятся: дуговые сталеплавильные печи, электросварка, поршневые компрессоры и ряд других. При резком возрастании нагрузки происходит резкое увеличение потерь напряжения в ветвях сети, питающих эту нагрузку. В результате резко уменьшается напряжение на приемном узле ветви. При резком уменьшении нагрузки происходит уменьшение потерь напряжения и, следовательно, увеличение напряжения на приемном узле ветви.
Отмечается, что в электрических сетях распространение колебаний напряжения происходит в направлении к шинам низкого напряжения практически без затухания, а к шинам высокого напряжения - с затуханием по амплитуде. Этот эффект проявляется в зависимости от мощности короткого замыкания SКЗ.СИСТ системы. При распространении колебаний напряжения в любом направлении их частотный спектр сохраняется.
Размах изменения напряжения - разность между следующими друг за другом действующих значений напряжения любой формы, т. е. между следующими друг за другом максимальным и минимальным значениями огибающей действующих значений напряжения.
Огибающая действующих (среднеквадратичных) значений напряжения - ступенчатая временная функция, образованная действующими значениями напряжения, определенными на каждом полупериоде напряжения основной частоты.
Если огибающая действующих значений напряжения имеет горизонтальные участки (при спокойном графике нагрузки), то размах изменения напряжения определяется как разность между соседними экстремумом (максимумом или минимумом ) и горизонтальным участком или как разность между соседними горизонтальными участками (рис.1).
Длительность изменения напряжения - интервал времени от начала одиночного изменения напряжения до его конечного значения (см. рис. 1).
Рис. 1. Колебания напряжения (пять размахов изменений напряжения)
Ф л и к е р (мерцание) - субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники.
Доза фликера - мера восприимчивости человека к воздействию фликера за установленный промежуток времени, т. е. интегральная характеристика колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение мерцаниями (миганиями) светового потока.
Дозу фликера напряжения в процентах в квадрате вычисляют по выражению
Время восприятия фликера - минимальное время для субъективного восприятия человеком фликера, вызванного колебаниями напряжения.
Электромагнитная совместимость (ЭМС) технических средств — способность технических средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных электромагнитных помех и не создавать недопустимых электромагнитных помех другим техническим средствам.
В реальных условиях в месте расположения электрооборудования действует большое число различного рода излучений, учёт которых возможен при помощи методов теории вероятностей и математической статистики. Обеспечение нормальной работы совместно работающих технических средств является целью ЭМС как научной проблемы. Предметом же изучения можно считать выявление закономерностей мешающего взаимодействия совместно работающих технических средств, на базе которых формируются рекомендации для достижения цели.
