Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
История технической науки учебное пособие для аспирантов.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
622.59 Кб
Скачать

4.2. Электромагнитная теория света

Во взаимодействия двух электрических зарядов, перемещающиеся относительно друг друга, входит коэффициент, имеющий смысл скорости. Эту скорость сам Вебер и Кольрауш определили экспериментально, эта величина получалась несколько больше скорости света. В следующем году Кирхгоф из теории Вебера вывел закон распространения электродинамической индук­ции по проводу: если сопротивление равно нулю, то скорость распростра­нения электрической волны не зависит от сечения провода, от его природы и плотности электричества и почти равна скорости распространения света в пустоте. Вебер в одной из своих теоретико-экспериментальных работ 1864 г. подтвердил результаты Кирхгофа, показав, что постоянная Кирхгофа коли­чественно равна числу электростатических единиц, содержащихся в электро­магнитной единице, и заметил, что совпадение скорости распространения электрических волн и скорости света можно рассматривать как указание на наличие тесной связи между двумя явлениями. Однако прежде чем гово­рить об этом, следует точно выяснить, в чем истинный смысл поня­тия скорости распространения электричества: «… а смысл этот, – заключает Вебер, – представляется вовсе не таким, чтобы вызывать большие надежды».

У Максвелла же как раз не было никаких сомнений, возможно потому, что он находил поддержку в идеях Фарадея относительно природы света.

«В различных местах этого трактата, – пишет Максвелл, приступая в XX главе четвертой части к изложению электромагнитной теории света, – делалась попытка объяснения электромагнитных явлений при помощи меха­нического действия, передаваемого от одного тела к другому при посредстве среды, занимающей пространство между этими телами. Волновая теория света также допускает существование какой-то среды. Мы должны теперь показать, что свойства электромагнитной среды идентичны со свойствами, светоносной среды...

Мы можем получить численное значение некоторых свойств среды, таких, как скорость, с которой возмущение распространяется через нее, которая может быть вычислена из электромагнитных опытов, а также наблюдена непосредственно в случае света. Если бы было найдено, что скорость распро­странения электромагнитных возмущений такова же, как и скорость света, не только в воздухе, но и в других прозрачных средах, мы получили бы серьез­ное основание для того, чтобы считать свет электромагнитным явлением, и тогда сочетание оптической и электрической очевидности даст такое же доказательство реальности среды, какое мы получаем в случае других форм материи на основании совокупности свидетельств наших органов чувств .

Как и в первой работе 1864 г., Максвелл исходит из своих уравнений и после ряда преобразований приходит к выводу, что в пустоте поперечные токи смещения распространяются с той же скоростью, что и свет, что и «пред­ставляет собой подтверждение электромагнитной теории света».

Затем Максвелл изучает более детально свойства электромагнитных возмущений и приходит к выводам, сегодня уже хорошо известным: колеблющийся электрический заряд создает переменное электрическое поле, неразрывно связанное с переменным магнитным полем; это представляет собой обобщение опыта Эрстеда. Уравнения Максвелла позволяют проследить изменения поля во времени в любой точке пространства. Результат такого исследования показывает, что в каждой точке пространства возникают электрические и магнитные колебания, т.е. интенсивность электрического и магнитного полей периодически изменяется; эти поля неотделимы друг от друга и поляризованы взаимно перпендикулярно. Эти колебания распространяются в пространстве с определенной скоростью и образуют поперечную электромагнитную волну: электрические и магнитные колебания в каждой точке происходят перпендикулярно направлению распространения волны.

Среди многих частных следствий, вытекающих из теории Максвелла, упомянем следующие: особенно часто под­вергавшееся критике утверждение о том, что диэлектрическая постоянная равна квадрату показателя преломления опти­ческих лучей в данной среде; наличие светового давления в направлении рас­пространения света; ортогональность двух поляризованных волн — электри­ческой и магнитной.