Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_lektsiy_Chast_1_Mekhanika.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.94 Mб
Скачать
  1. Векторы и действия с ними

Многие физические величины (перемещение, скорость, сила, и т.д.) являются векторными, поэтому твердое знание основных сведений о векторах и действиях с ними является совершенно необходимой предпосылкой успешного изучения курса общей физики. Перечислим основные сведения о векторах, необходимые для дальнейшего:

  1. Определение вектора.

  2. Модуль вектора.

  3. Коллинеарные и компланарные векторы.

  4. Сложение и вычитание векторов.

  5. Умножение вектора на скаляр.

  6. Единичный вектор (орт).

  7. Проекция вектора на заданное направление.

  8. Выражение вектора через его проекции на координатные оси.

  1. Компоненты вектора.

  2. Радиус-вектор.

  3. Скалярное произведение векторов.

  4. Векторное произведение векторов.

  5. Смешанное произведение векторов.

  6. Двойное векторное произведение векторов.

В качестве примера действий с векторами рассмотрим производную по времени единичного вектора , задающего направление вектора . Единичный вектор по определению имеет постоянный модуль, а значит изменяться может только по направлению.

Д опустим, что за очень малый промежуток времени вектор , а вместе с ним и орт поворачивается на угол . В результате получает приращение = , направление которого задается ортом этого приращения .

При малом (и, соответственно, ) орт приращения вектора , т.е. вектор , можно считать практически перпендикулярным вектору , а вектор – катетом прямоугольного треугольника, противолежащим углу . Тогда модуль приращения орта ,

. (1.1)

(Гипотенуза треугольника – вектор имеет единичную длину (ведь это единичный вектор!), а при малых (– проверьте на калькуляторе, если угол выражать в радианах!).

Таким образом, представив в виде произведения его модуля на орт приращения , можем записать (а так можно представить любой вектор!):

(1.2)

Необходимо учесть, что при орт поворачивается и в пределе совпадает по направлению с ортом перпендикуляра к вектору , направленным в сторону поворота , как это показано на рисунке 1. (Вектор лежит в той плоскости, в которой поворачивается вектор ). Тогда производная по времени орта может быть представлена в виде:

. (1.3)

Забегая вперед, отметим, что по смыслу представляет собой угловую скорость вращения вектора .

  1. Скорость материальной точки

Предварительно сформулируем необходимые определения (см. рисунок 1.2):

  • Т раекторией материальной точки будем называть воображаемую линию, вдоль которой движется частица. (Очевидно, что траектория – это, как и сама материальная точка, воображаемый объект, модель.)

  • Путь, пройденный материальной точкойскалярная величина, равная расстоянию, отсчитанному вдоль траектории при движении частицы из некоторой точки 1 в точку 2, .

  • П

    Рисунок 1.2.

    еремещение в результате движения из точки 1 в точку 2 вектор , проведенный из точки 1 в 2 траектории. Очевидно, что перемещение . С другой стороны разность конечного и начального значения радиус-вектора есть его приращение: . Поэтому можно считать, что можно считать, что перемещение представляет собой приращение радиус-вектора.

Движение частицы называется равномерным, если в любые равные промежутки времени частца проходит одинаковые пути (независимо от формы траектории!).

Важнейшим понятием кинематики является скорость материальной точки. На качественном уровне под скоростью в физике понимают векторную величину, характеризующую быстроту перемеще-ния частицы по траектории и направление, в котором движется частица.

На бытовом уровне скорость можно найти, разделив путь, пройденный телом за промежуток времени , на величину этого промежутка. Такой расчет дает, очевидно, приближенное значение скорости, а о направлении скорости вообще ничего не позволяет сказать.

Ч тобы дать более строгое определение скорости поступим следующим образом: разобьем мысленно траекторию на участки , кото­рые частица проходит за бесконечно малые промежутки времени (рисунок 1.3.). Каждому участку соответствует перемещение за соответствующий . Для бесконечно малого можно утверждать, что модуль перемещения равен пути точки:

, (1.4)

и траекторию можно считать состоящей из элементов , направленных в сторону перемещения частицы и совпадающих с . Можно считать, что за бесконечно малый движение тела не меняется. Отношение дает векторную характеристику быстроты движения точки, модуль которой совпадает с традиционным представлением о скорости.

Поэтому по определению скоростью частицы называется производная ее радиус-вектора по времени:

(1.5)

Поскольку модуль приращения радиус-вектора за время совпадает по формуле (1.4) с элементом траектории , то в каждой точке траектории вектор скорости направлен по касательной к траектории в сторону движения частицы. Соответственно орт вектора скорости совпадает с ортом касательной к траектории в данной точке, направленным в сторону движения частицы. Орт касательной к траектории принято обозначать . Поэтому для вектора скорости в данной точке траектории справедливо соотношение:

(т.е. ) (1.6)

Учитывая, что выражение для радиус-вектора через его проекции на оси координат имеет вид , для вектора скорости можно записать представление через его проекции на оси координат :

, (1.7)

Как следует из соотношения (1.7), проекции вектора скорости на оси координат равны производным по времени проекций радиус-вектора, а составляющие вектора скорости по осям координат получаются умножением соответствующих производных на орты осей системы координат:

(1.8)

(Напомним: проекции – это алгебраические скалярные величины, составляющие – это векторы, которые в сумме дают данный вектор).

В соответствии со своим определением вектор скорости характеризует быстроту изменения радус-вектора частицы. Радус-вектор может изменяться по модулю и по направлению. Следует предположить, что вектор скорости всегда можно представить в виде суммы двух векторов, один из которых характеризует изменение только по модулю, а второй только по направлению. Действительно, как и любой вектор, можно представить в виде:

. (1.9)

Находя производную по времени от этого выражения, получаем:

= , (1.10)

Составляющая направлена вдоль радиус вектора, а значит характерзует быстроту его изменения по мудулю. Направление второй составляющей, , определяется производной орта радиус-вектора: . Как мы уже установили, производная орта определяется выражением (1.3)

. (1.11)

где – угловая скорость поворота радиус-вектора, а - перпендикулярный к нему орт, направленный в сторону поворота. Следовательно, составляющая перпендикулярна радиус-вектору и характеризует быстроту его изменения по направлению. Модуль скорости связан с составляющими вектора скорости соотношенем:

. (1.12)

При движении точки изменяется ее радус-вектор и путь, пройденный ею путь от некоторой исходной точки. Если производная по времени от радиус-вектора дает по определению скорость частицы, то какой смысл имеет производная пути по времени?! Чтобы ответить на этот вопрос необходимо вспомнить о том, что модуль приращения радиус-вектора совпадает с элементом траектории . Тогда модуль соотношения, определяющего скорость,

. (1.13)

Таким образом, производная пути по времени дает модуль вектора скорости:

, (1.14)