- •Глава 1 основные элементы и определения наноматериалов и нанотехнологий
- •1.1.Свойства нанокристаллических материалов
- •1.2. Нанокристаллические порошки и их прочностные свойства
- •1.3. Нанотехнологии и влияние на них характеристик и свойств наночастиц
- •1.4. Технология разработки наноматериалов
- •1.5. Коэффициент извлечения нефти при различных технологиях разработки нефтяных месторождений и проблемы рационального нефтеизвлечения
- •1.6. Формирование нанонауки
- •1.7. Наноматериалы и нанотехнологии, используемые в горной промышленности
- •Глава 2 нанотехнологии для добычи нефти и газа
- •2.1. Углеводороды как объект нанотехнологий
- •Гидрофобная наножидкость для скважинных операций
- •2.3. Применение нанотехнологий для регулирования биологического состава с целью снижения коррозионных поражений эксплуатационных труб
- •2.4. Применение нанореагентов для регулирования образования асфальто-смолисто-парафиновых отложений в скважинах
- •2.5. Изменение наноявлений на контакте вода- газ при утилизации низконапорного газа из газовых залежей и попутного нефтяного газа
- •2.6. Применение инновационных нанотехнологий на нефтяных месторождениях Азербайджана
- •Глава 3 прикладная физико-химия наносистем и наноявления в нефтегазовых пластах
- •3.1. Изменения упругоемкости пласта, взаимовлияние механических напряжений и физико-химических наноявлений на контакте жидкости с породой при вытеснении нефти
- •3.2. Добавки в воду, регулирующие наноявления ионнообмена при вытеснении нефти
- •3.3. Фазовые равновесия многолетнее мерзлых пород и гидратов метана при изменении термобарических условий
- •Глава 4 классификация нанотехнологий в добыче нефти и газа
- •4.1. Мероприятия воздействия на нефтяные пласты
- •4.2. Нанотехнологии в добыче нефти и газа
- •4.3. Совершенствование нефтегазовых нанотехнологий
- •4.4. Наноразмерный подход для исследования реагентов и технологий регулирования состояний газогидратов
- •Глава 5 влияние наноструктур нефти на приток в скважину
- •5.1. Развитие термических технологий для добычи высоковязкой нефти
- •5.2. Реагентное снижение вязкости нефти (уменьшение длины асфальтеновых нанореагентов)
- •Глава 6 механизм перемещения нефти в пласте и молекулярно-поверхностные процессы (нанопроцессы)
- •6.1. Влияние наноразмера пор (проницаемости) на коэффициент извлечения нефти
- •6.2. Технология повышения кин для низкопроницаемых пластов с учетом наноявлений
- •6.3. Особенности гистерезисных эффектов в нефтегазовых пластах
- •6.4. Влияние пластовых и электрически заряженных компонентов на динамику перемещения нефти
- •6.5. Особенности наноразмерного механизма регулирования взаимодействия глинистого материала и флюидов в пластовых условиях
- •6.6. Применение термонеустойчивых химреагентов при закачке в пласт водных растворов с поверхности
- •Глава 7
- •Влияние наноявлений смачиваемости
- •На характер вытеснения нефти
- •Из нефтегазовых пластов
- •7.1. Применение пенной нанотехнологии на нефтяных месторождениях для повышения кин
- •7.2. Применение пенной нанотехнологии на газовых месторождениях
- •Глава 8 необходимость учета наноявлений для мониторинга разработки нефтяных залежей. Будущие нефтегазовые нанотехнологии
- •8.1. Влияние наноявлений в системе «нефть- газ- вода- порода» на кин
- •8.2. Необходимость наноочистки закачиваемой воды для повышения кин
- •8.3. Будущие нефтегазовые нанотехнологии
- •Заключение
- •Литература
Гидрофобная наножидкость для скважинных операций
Пограничными технологиями для добычи и в добыче являются технологии сохранения коллекторских свойств пласта при технологических операциях в скважинах. Например, при применении гидрофобных эмульсий, обеспечивающих требуемую плотность и одновременно предотвращающих уменьшение проницаемости призабойной зоны, улучшение ее свойств достигается за счет добавления дисперсной твердой фазы с размерами частиц не более 0,1 мкм (т.е. менее 100 нм), что говорит о принадлежности этой технологии к нанотехнологиям. Такие параметры также обеспечивают отвод избыточного тепла из зоны проведения технологического мероприятия. С 2007г. в развитие этого способа создан состав СНПХ-СХ-3003, промышленно выпускаемый НИИнефтепромхим (г. Казань).
2.3. Применение нанотехнологий для регулирования биологического состава с целью снижения коррозионных поражений эксплуатационных труб
Исследователи отмечают, что около 80% коррозионных поражений эксплуатационных скважин, включая обсадные трубы и другое оборудование, связано с деятельностью сульфат-восстанавливающих и других бактерий.
Изучение образцов портландцементного камня, находившегося в условиях нефтяного пласта, показало, что в порах цементного камня обнаруживаются нефтеокисляющие бактерии, денитрификаторы, сульфатредуцирующие и сульфатвосстанавливающие бактерии, различные грибки, в результате жизнедеятельности которых происходит послойное разрушение образцов с изменением состава порового пространства. Поскольку размеры пор цементного камня и породы в ряде случаев близки между собой, а некоторые химические элементы (Са, Mg, Na, Si, Р, S) являются основой и цементного камня, и породы, то можно предположить, что и в поровом пространстве породы возможно развитие своеобразных экологических ниш для различных видов микроорганизмов и грибков при наличии органического вещества. На принципе изучения различных микробных ассоциаций разработаны различные способы поисков залежей углеводородов.
Микроорганизм отдельно взятый, имеет электрический заряд, как правило, в целом, отрицательный. Это позволяет рассматривать фильтрацию жидкости с микроорганизмами с точки зрения электрокинетической теории.
B тоже время, микроорганизмы, образуя в коллекторах и поровом пространстве своеобразные сообщества, при благоприятных условиях, активно участвуют в метаморфизме минералов. Микроорганизмы мобилизуют элементы из кристаллических решеток породообразующих минералов с помощью сильных химических реагентов, которые они же и продуцируют. Эти реагенты представлены разнообразными минеральными и органическими кислотами, биогенными щелочами, что делает биохимический аппарат, которым располагает микрофлора для деструкции минералов, в высшей степени гибким и разнообразным.
Поэтому регулирование биологического состава используемых для добыче нефти и газа вод является одной из разновидностей нанотехнологии повышение эффективности разработки нефтегазовых месторождений.
