Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
хим (4).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
258.47 Кб
Скачать

Пове́рхностно-акти́вные вещества́ (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела термодинамических фаз, вызывают снижение поверхностного натяжения.

Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемуюкритическую концентрацию мицеллообразования, или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизациямолекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Методы определения ККМ:

  • Метод поверхностного натяжения

  • Метод измерения краевого угла (угла смачивания) с тв. или жидкой поверхностью (Contact angle)

  • Метод вращающейся капли (Spindrop/Spinning drop)

Содержание

  [убрать

  • 1 Строение ПАВ

  • 2 Классификация ПАВ

  • 3 Производство ПАВ из высших жирных спиртов

  • 4 Влияние ПАВ на компоненты окружающей среды

  • 5 Области применения

  • 6 Комментарии

  • 7 Примечания

  • 8 Библиография

  • 9 См. также

Строение ПАВ[править | править вики-текст]

Как правило, ПАВ — органические соединения, имеющие амфифильное строение, то есть их молекулы имеют в своём составе полярную часть, гидрофильный компонент(функциональные группы -ОН, -СООН, -SOOOH, -O- и т. п., или, чаще, их соли -ОNa, -СООNa, -SOOONa и т. п.) и неполярную (углеводородную) часть, гидрофобныйкомпонент. Примером ПАВ могут служить обычное мыло (смесь натриевых солей жирных карбоновых кислот —олеатастеарата натрия и т. п.) и СМС (синтетические моющие средства), а также спиртыкарбоновые кислоты,амины и т. п.

Классификация ПАВ[править | править вики-текст]

  • Ионогенные ПАВ

    • Катионные ПАВ

    • Анионные ПАВ

    • Амфотерные ПАВ

  • Неионогенные ПАВ

    • Алкилполиглюкозиды

    • Алкилполиэтоксилаты

Производство ПАВ из высших жирных спиртов[править | править вики-текст]

Важнейшим сырьём в производстве современных поверхностно-активных веществ для синтетических моющих средств являются высшие жирные спирты, которые в зависимости от реагента дают неионогенные или анионные ПАВ, что иллюстрирует приведённая ниже схема[1]:[стр. 5].

Мировой объём использования высших жирных спиртов в производстве ПАВ в 2000 году составил 1,68 млн тонн[1]:[стр. 6]. В 2003 году около 2,5 млн тонн ПАВ было произведено на основе высших жирных спиртов[2].

Применение высших жирных спиртов для производства поверхностно-активных веществ

 Класс ПАВ

 Вид ПАВ

 Химическая формула

 Реагент для синтеза

 Схема синтеза

 Источники

 Неионогенные ПАВ

 Алкоксилаты

 этоксилаты

 R−O−(CH2CH2O)nH

 окись этилена

 [К 1]ROH + n(CH2CH2)O → RO−(CH2CH2O)nH

Реакция протекает в присутствии щелочи при температуре до 160°С и давлении до 0,55МПа. Обычно используют C9—C15 спирты в сочетании с 6—7 молями окиси этилена.

[3]:[стр. 31, 35][1]:[стр. 137—139]

 пропоксилаты

 R−O−(CH2CH(CH3)O)nH

 окись пропилена

 бутоксилаты

 R−O−(CH2CH(C2H5)O)nH

 окись бутилена

 Алкилгликозиды

 R−(O−C6H10O5)nH

 глюкоза

ROH + nC6C12O6 → R−(O−C6H10O5)nH+nH2O Реакция протекает в присутствии сульфокислот при температуре до 140°С. Другой вариант — предварительное получение бутиловых эфиров с последующей переэтерификацией. Число гликозидных групп колеблется от 1 до 3.

[3]:[стр. 38] [1]:[стр. 149]

Анионные ПАВ

 Карбоксиэтоксилаты

 R−O−(CH2CH2O)nСH2COOH

 хлоруксусная кислота

RO(CH2CH2O)nH + ClCH2COOH → RO(CH2CH2O)nСH2COOH + HCl

Реакция протекает в присутствии щёлочи, кислота выделяется подкислением водного раствора и отделением водно-солевой фазы.

[3]:[стр. 40] [1]:[стр. 126—127]

 Фосфаты и полифосфаты

 ROP(OH)2O; (RO)2P(OH)O

 оксид фосфора(V)

3ROH + P2O5 → ROP(OH)2O +(RO)2P(OH)O

Добавление порошкообразного оксида фосфора к безводным спиртам в безводной среде при 50—70 °С и интенсивном перемешивании[К 2].

[3]:[стр. 54] [1]:[стр. 122—123]

 Сульфосукцинаты

 ROC(O)CH2CH(SO3Na)COOH; ROC(O)CH2CH(SO3Na)COOR

 малеиновый ангидрид,сульфит натрия

ROH + (COCH=CHCO)O → ROC(O)CH=CHCOOH ROC(O)CH=CHCOOH + Na2SO3 → ROC(O)CH2CH(SO3Na)COONa Этерификация спиртов малиновым ангидридом (T до 100 °С) и дальнейшее присоединение к эфиру сульфита натрия пр нагревании.

[3]:[стр. 52—53] [4]

 Алкилсульфаты

 R−O−SO3H[К 3]

 серная кислота,оксид серы(VI),хлорсульфоновая кислота

ROH + SO3 → ROSO3H Прямое сульфирование спиртов при последующей нейтрализации раствора щелочью.

[3]:[стр. 55—56] [4]

 Алкилэфиросульфаты

 R−(CH2CH2O)nOSO3H

Также в производстве ПАВ используются и некоторые другие спирты: глицерин (сложные эфиры с жирными кислотами — эмульгаторы), сорбитол (сорбитаны), моноэтаноламин и диэтаноламин (алканоламиды).

Влияние ПАВ на компоненты окружающей среды[править | править вики-текст]

ПАВ делятся на те, которые быстро разрушаются в окружающей среде и те, которые не разрушаются и могут накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде — понижение поверхностного натяжения. Например в океане изменение поверхностного натяжения приводит к снижению показателя удерживания CO2 и кислорода в массе воды. Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы. Однако приадсорбировании ПАВ на поверхности частичек земли/песка степень/скорость их деградации снижаются многократно. Так как почти все ПАВ, используемых в промышленности и домашнем хозяйстве, имеют положительную адсорбцию на частичках земли, песка, глины, при нормальных условиях они могут высвобождать (десорбировать) ионы тяжёлых металлов, удерживаемые этими частичками, и тем самым повышать риск попадания данных веществ в организм человека.

Области применения[править | править вики-текст]

  • Моющие средства. Основное применение ПАВ — в качестве активного компонента моющих и чистящих средств (в том числе, применяемых для дезактивации), мыла, для ухода за помещениями, посудой, одеждой, вещами, автомобилями и пр. В 2007 году в России было произведено более 1 млн тонн синтетических моющих средств, главным образом — стиральных порошков. В настоящее время самым распространенным ПАВ в синтетических моющих средствах является алкилбензосульфонат. К группе анионных ПАВ также принадлежат алкансульфонат(SAS), алкилсульфат (FAS) и летучий алкилсульфат (FAES). FAS может быть получен из растительного сырья, например рапсового масла, или масла кокоса. В катионных ПАВ гидрофильная группа представлена положительно заряженной, азотосодержащей группой. В качестве отрицательно заряженного противовеса выступает ион хлора, или метилсульфат. Эти ПАВ особенно активно используются в синетических средствах для "щадящей" стирки, так как играют роль смазки. Неионогенные ПАВ не создают ионы в водных растворах и, следовательно, обладают важными преимуществами: они абсолютно невосприимчивы к жесткости воды, демонстрируют высокую эффективность даже при низких концентрациях и низких температурах стирки, не образуют много пены и препятствуют потемнению белья. Сапонин, полученный из мыльнянки или стиральных орешков (Waschnussen) принадлежит к неионогенным ПАВ. Другим примером неионогенного ПАВ являетсясахарный алкилполиглюкозид (APG), добываемый из возобновляемого сырья: кукурузы, сахарного тростника и кокосового ореха. APG является биологически разлагаемым и имеет отличную совместимость с кожей. Именно эти ПАВ используются в натуральных стиральных порошках

  • Косметика. Основное использование ПАВ в косметике — шампуни, где содержание ПАВ может достигать десятков процентов от общего объёма. Также ПАВ используются в небольших количествах в зубной пасте, лосьонах, тониках и других продуктах.

  • Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.

  • Кожевенная промышленность. Защита кожаных изделий от лёгких повреждений и слипания.

  • Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения, что обеспечивает лёгкое проникновение красочного материала в маленькие углубления на обрабатываемой поверхности и их заполнение с вытеснением при этом оттуда другого вещества (например, воды).

  • Бумажная промышленность. ПАВ используются для разделения чернил и варёной целлюлозы при переработке использованной бумаги. Молекулы ПАВ адсорбируются на пигменте чернил. Пигмент становится гидрофобным. Далее воздух пропускается через раствор пигмента и целлюлозы. Пузырьки воздуха адсорбируются на гидрофобной части ПАВ и частички пигмента чернил всплывают на поверхность. См. флотация.

  • Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение. Выдерживают высокие температуры, при которых сгорает масло.

  • Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. Используются для повышения эффективности транспортировки питательных компонентов к растениям через мембранные стенки.

  • Пищевая промышленность. ПАВ в виде эмульгаторов (например лецитина[источник не указан 939 дней]) добавляют для улучшения вкусовых качеств мороженого, шоколада, взбитых сливок, соусов для салатов и других блюд.

  • Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличениянефтеотдачи.

  • Строительство. ПАВ[источник не указан 939 дней], называемые пластификаторами, добавляют к цементно-песчаным смесям и бетонам для уменьшения их водопотребности при сохранении подвижности. Это увеличивает конечную прочность (марку) затвердевшего материала, его плотность, морозостойкость, водонепроницаемость.

  • Медицина. Катионные и анионные ПАВ применяют в хирургии в качестве антисептиков. Например, четвертичные аммониевые соединения приблизительно в 300 раз эффективнее фенола по губительному действию в отношении микроорганизмов. Антимикробное действие ПАВ связывают с их влиянием на проницаемость клеточных мембран, а также ингибирующим действием на ферментативные системы микроорганизмов. Неионогенные ПАВ практически не обладают противомикробным действием.

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности   — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников(посмотреть статью: Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятиявнутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразныхжидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]