- •Unit 4 metallurgy
- •Text 2 History
- •Occurrence
- •Health effects
- •Processing of metal from ore
- •Descriptive chemistry
- •History
- •Zinc toxicity
- •Text 9 a. Zinc mining and processing
- •B. Alloys
- •C. Compounds
- •A. Notable characteristics
- •B. Applications
- •Text 11 History of uranium use
- •Text 12 a. Uranium production and distribution
- •B. Uranium exploration and mining
- •C. Compounds
- •D. Hazards
- •Урановая промышленность
- •Производство бериллия
D. Hazards
All isotopes and compounds of uranium are toxic, teratogenic, and radioactive. It has been shown that some compounds of uranium could cause renal damage, but no conclusive evidence has yet been produced.
No deaths are causally associated with prolonged occupational exposure to inhaled uranium compounds. Although accidental inhalation exposure to a high concentration of uranium hexafluoride has resulted in human fatalities, those deaths were not associated with uranium. On the basis of the available data, exposure to environmental uranium or to uranium at levels found at hazardous waste sites will not be lethal to humans.
Radiological effects are generally local because this is the nature of alpha radiation, the primary form from U-238 decay. Uranium compounds in general are poorly absorbed by the lining in the lungs and may remain a radiological hazard indefinitely. Uranyl (UO2+) ions, such as from uranium trioxide or uranyl nitrate and other hexavalent uranium compounds have been shown to cause birth defects and immune system damage in laboratory animals.
Finely-divided uranium metal presents a fire hazard because uranium is pyrophoric, so small grains will ignite spontaneously in air at room temperature.
A person can be exposed to uranium (or its radioactive daughters) by inhaling dust in air or from smoking tobacco products which have been grown using certain phosphate fertilizers, or ingesting water and food. The general population is exposed to uranium primarily through food and water; the average daily intake of uranium from food ranges from 0.07 to 1.1 micrograms per day. The amount of uranium in air is usually very small; however, people who live near government facilities that made or tested nuclear weapons, or facilities that mine or process uranium ore or enrich uranium for reactor fuel, may have increased exposure to uranium. Houses or structures which are over uranium deposits (either natural or man-made slag deposits) may have an increased incidence of exposure to radon gas, a radioactive carcinogen.
Uranium can enter the body when it is inhaled or swallowed, or under rare circumstances it may enter through cuts in the skin. Uranium does not absorb through the skin, and alpha particles released by uranium cannot penetrate the skin, so uranium that is outside the body is much less harmful than it would be if it were inhaled or swallowed. When uranium enters the body it can lead to kidney damage. Uranium itself is not a chemical carcinogen.
Uranium mining carries the danger of airborne radioactive dust and the release of radioactive radon gas and its daughter products (an added danger to the already dangerous activity of all hard rock mining). As a result, without proper ventilation, uranium miners have a dramatically increased risk of later development of lung cancer and other pulmonary diseases. There is also the possible danger of groundwater contamination with the toxic chemicals used in the separation of the uranium ore.
Text 13
УРАН, U (uranium), металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.
A. Нахождение в природе. Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.
B. Открытие. Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.
C. Первые применения урана. Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4–8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914–1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.
D. Современное применение урана. Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка – смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта – уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO2. Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана.
E. Соединения. Уран – высокореакционноспособный металл – имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700–1000° С, а пары урана горят уже при 150–250° С, с HF уран реагирует при 200–400° С, образуя UF4 и H2. Уран медленно растворяется в концентрированной HF или H2SO4 и 85%-ной H3PO4 даже при 90° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO3 с образованием нитрата уранила. В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U4+. В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U4+, одна из них UCl4 – легко окисляемая соль зеленого цвета); соли уранила (радикала UO22+) типа UO2(NO3)2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO3 (желтая окраска) в кислой среде. В щелочной среде UO3 образует уранаты типа Na2UO4 или Na2U2O7. Последнее соединение («желтый уранил») применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол.
Галогениды урана широко изучались в 1940–1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF3 был получен восстановлением UF4 водородом, а тетрафторид урана UF4 получают разными способами по реакциям HF с оксидами типа UO3 или U3O8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF6 получают фторированием U или UF4 элементным фтором либо действием кислорода на UF4. Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54° С). Оксогалогениды урана, например, оксофториды, имеют состав UO2F2 (фторид уранила), UOF2 (оксид-дифторид урана).
Text 14
