- •Плоскость симметрии: символ σ
- •Собственная ось вращения: символ Cn
- •Элементы и операции
- •Совпадающие оси
- •1.5 Зеркально-поворотная ось: символ Sn
- •1.6 Центр симметрии: символ I
- •1.7 Идентичность: символ е
- •1.8 Комбинации элементов симметрии – точечные группы и их символы
- •1.9 Систематическая лассификация точечных групп
- •1.10. Знакомство с таблицами характеров.
- •Точечные группы хиральных молекул
- •Заключение
- •Задачи и упражнения
- •Матрицы, таблицы характеров и представления
- •2.1 Введение в использование матриц – некоторые определения
- •2.2 Умножение матриц
- •2.3 Операции симметрии и матрицы
- •2.4 Понятие о представлениях
- •2.5 Неприводимые представления: более подробное знакомство с таблицами характеров.
- •2.6 Заключение
- •2.7 Упражнения
- •3. Подробнее о представлениях. Формула приведения.
- •3.1 Приводимые представления
- •3.2 Использование характеров матриц при приведении путём проверки (подстановки?)
- •3.2 Применение характеров матриц для приведения методом подбора.
- •3.3 Приведение представлений с использованием «формулы приведения»
- •3.4 Расширение базиса для представления
- •3.5 Представления Гr и Гd
- •3.6 Заключение
- •Упражнения
- •Матрицы и представления в точечных группах более высокого порядка - вырожденные представления
- •4.1 Матрицы для вращения с4
- •4.2 Матрицы для поворота на угол : общее выражение для характера операции Сn1
- •Представления в точечных группах высшего порядка
- •4.4. Представления в точечной группе c3v
- •Представления, базирующиеся на X, y и z в точечной группе c3v
- •Неприводимые представления, базирующиеся на X, y и z в точечной группе c3v
- •Трижды вырожденные представления: точечная группа Td.
- •Характеры для представления гxyz для центрального атома
- •4.9 Представление г в сн4.
- •4. 10 Заключение
- •4.11 Упражнения
- •Колебания в молекулах (не вырожденные моды)
- •5.2. Координаты смещения атомов, как базис для представления движений в молекуле: молекула н2о
- •5.3 Представления для движений атомов н и о
- •5.4 Гmol из первых- значение несмещённых атомов.
- •Трансляционная, вращательная и колебательная симметрия в молекуле н2о
- •Графическое изображение трансляций, вращений и колебаний в молекуле н2о.
- •Вклад в характер от несмещённых атомов - другие операции симметрии
- •Общий порядок действий при определении симметрии молекулярных колебаний.
- •Пример (иллюстрация): определить симметрию колебательных мод в молекуле so2f2
- •Молекулярные колебания и внутренние координаты.
- •Симметрия валентных колебаний
- •Способ выведения симметрий валентных колебаний
- •Заключение
- •Колебательная спектроскопия – вырожденные колебания
- •6.2 Рамановская спектроскопия
- •6.3 Взаимоисключения между ик и Раман спектральными свойствами
- •6.4 Ик и Раман активные колебания в н2о и so2f2
- •6.7 Колебания в xy4 (Td) и xy6 (Oh)
- •6.8 Валентные моды в больших молекулах: карбонилы металлов
- •6.9 Валентные моды карбонилов в Мо(со)6
- •6.10 Валентные моды карбонила в цис- и транс- Мо(со)4l2
- •Упражнения
- •Симметрия и химическая связь
- •7.2 Атомные орбитали в тетраэдрическом (Td) окружении.
- •7.4 Орбитали центрального атома.
- •7.6 Комбинации рσ орбиталей: σ-связи в XeF4
- •7.7. Внеплоскостное связывание в XeF4
- •7.9 Схема связывания с помощью молекулярных орбиталей для мх6
- •7.10 Заключение
- •7.11 Упражнения.
Трижды вырожденные представления: точечная группа Td.
Трижды вырожденные представления - это неприводимые представления, состоящие из матриц 3 х 3 и обозначающиеся основным символом Т.С химической точки зрения, чаще всего они могут быть найдены в кубических точечных группах Td и Oh, и их распространенность лучше всего проиллюстрировать на примере.
На рис 4.4 показаны три вектора x1, y1 и z1 на центральном атоме в тетраэдрической
|
Рис. 4.4 |
Таблица характеров для группы Td приведена ниже:
Td |
E |
8C3 |
3C2 |
6S4 |
6d |
h = 24 |
|
A1 |
1 |
1 |
1 |
1 |
1 |
|
x2+ y2+z2 |
A2 |
1 |
1 |
1 |
-1 |
-1 |
|
|
E |
2 |
-1 |
2 |
0 |
0 |
|
(2z2-x2-y2, x2-y2) |
T1 |
3 |
0 |
-1 |
1 |
-1 |
(Rx, Ry, Rz) |
|
T2 |
3 |
0 |
-1 |
-1 |
01 |
(x, y, z) |
(xy, xz, yz) |
Мы можем видеть, что в ней содержится два трижды вырожденных неприводимых представления, Т1 и Т2, записанных в крайнем слева столбце.
Сбоку от этих символов находятся строки чисел, которые соответствуют характерам матриц. а в последнем столбце можем найти набор функций, вместе заключённых в скобки. Таблица характеров показывает что и (x, y, z) и (xy, xz, yz) отображаются как Т2, и мы можем подтвердить это для набора (x, y, z) если определим характеры матриц для выбранных операций симметрии из группы на векторы x1, y1 и z1.
Характеры для представления гxyz для центрального атома
Мы уже убедились ранее, что для того, чтобы получить неприводимые представления для любого представления Г нам необходимо лишь знать характеры матриц, которые составляют Г вместе с данными из таблицы характеров. В этом сложном случае мы попытаемся направиться прямо (непосредственно) к характерам различных матриц, путём сосредоточивания на диагональных элементах каждой из матриц 3 х 3, поскольку только они вносят вклад в характер.
Операция идентичности оставляет x1, y1 и z1 без смещения, поэтому каждый вектор производит элемент +1 на диагонали. Характер матрицы, таким образом, равен +3. В этой точечной группе принимаются во внимание восемь отдельных (различных) операций С3:
|
для C2 (z): x1 в -x1, y1 в -y1 и z1 в z1 что приводит к характеру -1
для S41: x1 в y1, y1 в -x1 и z1 в -z1, которые также дают -1.
И, наконец, как показано ранее, отражение в любой вертикальной плоскости приведёт к матрице с характером +1. В данном случае, отражение в σd меняет x1 и y1, но оставляет без изменений -z1. Матрица, которая формирует представление ГXYZ поэтому имеет характеры:
E |
8C3 |
3C2 |
6S4 |
6d |
3 |
0 |
-1 |
-1 |
1 |
И так соответствует Т2.
