- •Розділ № іі Опір матеріалів
- •Тема2.1 Основні положення
- •Пружна та пластична деформації
- •Принцип Сен-Венсена
- •Метод перерізу
- •Напруження
- •Тема 2.2 Розтяг і стиск
- •Повздовжні сили
- •В икористовуючи метод перерізів
- •Напруження в плоских перерізах, епюри.
- •Закон Гуку при розтязі і стиску
- •Поперечна деформація при розтязі і стиску.
- •Діаграма розтягу. Механічні характеристики матеріалу
- •А) Характеристики міцності матеріалу
- •Б)Характеристики пружності матеріалу
- •В)Характеристики пластичності матеріалу
- •Г діаграма стиску пластичного матеріалу Діаграми сірого чавуну ) Діаграма стиску
- •Розрахункова формула при розтязі і стиску.
- •Зминання.
- •Розрахункове рівняння на зминання
- •Зсув. Напруження при зсуві.
- •Деформація і закон Гука при зсуві.
- •Тема 2.3 Кручення.
- •Тема 2.4 Згин. Основні поняття.
- •Згинаючий момент і поперечна сила.
- •Епюри поперечних сил і згинаючих моментів
- •Нормальні напруження при чистому згині.
- •Р озрахункова формула на міцність при згині
- •Про раціональну форму поперечного перерізу
- •Тема 2.5 Гіпотези міцності.
- •Класичні критерії міцності
- •1) Критерій найбільших нормальних напружень (перша теорія міцності)
- •2) Критерій найбільших лінійних деформацій (друга теорія міцності)
- •3)Критерій найбільших дотичних напружень (третя теорія міцності)
- •4)Критерій питомої потенціальної енергії зміни форми (четверта теорія міцності)
- •5) Критерій Мора
- •Нові критерії міцності. Критерій Писаренка-Лебедєва
- •Поняття про складний опір
- •Згин з крученням
- •Розділ ііі деталі механізмів і машин
- •Тема 3.1. Основні поняття і визначення
- •1. Загальні відомості
- •Вимоги до машин і деталей
- •Тема 3.2 з’єднання деталей машин Роз’ємні з’єднання.
- •2. Кріпильні різьби та їхні основні параметри
- •3. Кріпильні різьбові деталі, їхні конструкції та матеріали
- •4. Стопоріння різьбових з'єднань
- •Тема 3.3. Механізми поступального, коливального і перервного руху.
- •Тема 3.4. Механічні передачі обертального руху.
- •1. Призначення механічних передач та їхня класифікація.
- •2. Основні співвідношення для кінематичних параметрів і параметрів навантаження механічних передач
- •1. Загальні відомості та класифікація фрикційних передач
- •Зубчасті передачі
- •1. Особливості зубчастих передач
- •2. Переваги та недоліки зубчастих передач
- •3. Класифікація зубчастих передач
- •4. Передачі з циліндричними колесами
- •5. Кінематичні параметри зубчастої передачі з циліндричними колесами
- •6. Геометричні параметри зубчастого циліндричного колеса
- •7. Виготовлення зубчастих коліс
- •8. Сили, які діють у зачепленні циліндричних коліс
- •9. Види і причини відмов закритих та відкритих зубчастих передач
- •1. Призначення конічних зубчастих передач
- •2. Особливості геометрії та кінематики конічних передач
- •8.3. Особливості силових параметрів конічних передач
- •1. Призначення черв'ячних передач
- •2. Класифікація черв’ячних передач
- •3. Особливості геометрії черв'ячної передачі та її деталей
- •4. Особливості кінематики черв'ячних передач
- •9.5. Сили у черв'ячному зачепленні
- •6. Матеріали черв'яків і коліс
- •7. Переваги та недоліки черв'ячних передач
- •1. Загальні відомості про пасові передачі
- •2. Переваги та недоліки пасових передач
- •3. Особливості кінематики пасових передач
- •4. Види і причини відмов, критерії працездатності та розрахунку пасових передач
- •5. Навантаження на вали та опори пасової передачі
- •11.4. Основні характеристики ланцюгових передач
- •Тема 3.5 вали та осі
- •1. Призначення валів і осей
- •2. Класифікація валів
- •3. Основні конструктивні елементи валів
- •Підшипники
- •1 Призначення і класифікація
- •2 Підшипники ковзання
- •3 Підшипники кочення
Тема 3.3. Механізми поступального, коливального і перервного руху.
КРИВОШИП-ПОВЗУННИЙ МЕХАНІЗМ
—
механізм, що
перетворюють обертовий рух у рух
прямолінійний зворотно-поступальний
або навпаки
КРИВОШИП – ланка , що обертається навколо нерухомої осі
ШАТУН - ланка , що має складний рух паралельно якійсь площині
ПОВЗУН – ланка , яка має зворотно-поступальний рух.
КРИВОШИПНО-КУЛІСНИЙ МЕХАНІЗМ - для перетворення рівномірного обертового руху на нерівномірний обертовий, хитальний або зворотно-поступальний
КУЛІСА - рійка з пазом
КМЕНЬ КУЛІСИ - який переміщується по пазу куліси
КРИВОШИП
КРИВОШИПНО-КОРОМИСЛОВИЙ МЕХАНІЗМ (в) - за допомогою якого обертовий рух перетворюється на хитальний
4
КОРОМИСЛО - ланка , яка хитається навколо
нерухомої осі.
КУЛАЧКОВІ МЕХАНІЗМИ
За допомогою кулачкових механізмів можна отримати практично будь-який закон руху.
Кулачкові механізми застосовують, коли необхідно, щоб рух вихідної ланки виконувався точно у відповідності до заданого закону; був узгоджений з рухом інших механізмів; при цьому, можна забезпечити тимчасову зупинку (вистій) вихідної ланки при неперервному русі вхідної.
Кулачкові механізми - найпростіші, компактні та надійні механізми для точного виконання складних законів руху.
Недоліком кулачкових механізмів є значний питомий тиск між елементами вищої кінематичної пари і, як наслідок, порівняно велике їх спрацювання.
Кулачковий механізм – механізм, до складу якого входить кулачок. Кулачком називається ланка, що утворює вищу кінематичну пару, елемент якої виконаний у вигляді поверхні змінної кривини.
Найпростіший кулачковий механізм являє собою триланковий механізм, що складається з кулачка ^ 1, штовхача (штанги) 2 та стояка 3 (рис. 6.1). Кулачок, як правило, є вхідною ланкою механізму.
Кулачкові механізми поділяються: на плоскі та просторові; за видами руху вхідної та вихідної ланок; за способом замикання вищої пари; за видом елементу вищої пари вихідної ланки.
Найчастіше застосовують кулачкові механізми, в яких кулачок здійснює неперервний обертальний рух. Вихідна ланка переважно виконує зворотно-поступальний або коливальний рух. В останньому випадку вихідна ланка називається коромислом (рис.6.1, г, д).
Ще одним недоліком кулачкових механізмів є необхідність забезпечувати постійне замикання ланок, які утворюють вищу кінематичну пару. Постійний контакт елементів у вищій кінематичній парі може забезпечуватися геометричним замиканням (конструктивно за рахунок ролика у пазу чи охоплюючих роликів і т.ін.), або силовим замиканням (під дією сил пружності, сил ваги, гідравлічних чи пневматичних пристроїв). Завдяки простоті конструкції та меншим габаритам механізмів, найчастіше застосовують силове замикання за допомогою пружин. При структурному аналізі пружину не включають до загального числа ланок.
Вихідна ланка може мати різні форми елементів вищої пари: загострену (зі сферою малого радіуса), тарілчасту (з плоскою, циліндричною або сферичною контактними поверхнями) чи мати проміжну ланку – ролик; загострений штовхач здійснює найточніші переміщення за заданим законом, але швидко спрацьовується. Таку конструкцію застосовують у тихохідних механізмах з малими навантаженнями. Для зменшення втрат на тертя, підвищення стійкості проти спрацювання, надійності та довговічності механізму, між кулачком і штовхачем встановлюють ролик, або використовують тарілчастий штовхач. Встановлення ролика дозволяє частково замінити тертя ковзання тертям кочення.
Роликові вихідні ланки використовують в механізмах, у яких підвищені вимоги до стійкості проти спрацювання. Відмітимо, що в цьому випадку розрізняють два профілі кулачка: центровий (теоретичний) та дійсний (робочий, практичний). Центровий профіль являє собою траєкторію руху центра ролика при обкочуванні його навколо кулачка. Дійсний профіль-обгинну до послідовних положень ролика у тому ж відносному русі. Отже, центрові та дійсні профілі кулачка - еквідистантні (рівновіддалені) криві, відстань між якими, виміряна по нормалі, дорівнює радіусу ролика. Заміна дійсного профілю на центровий дуже зручна при аналізі та синтезі кулачкових механізмів; при цьому характер миттєвого відносного руху всіх ланок механізму не змінюється.
Тарілчастий штовхач (рис. 6.1, в) застосовують, коли у випадках жорстких обмежень габаритних розмірів ролик встановити не вдається. З метою розподілу спрацювання тарілки на більшу поверхню, кінематичну пару “штовхач-напрямна” виконують як циліндричну пару, з можливістю обертання тарілки навколо осі.
Кулачкові механізми можуть бути центральні (вісь штовхача проходить через вісь обертання кулачка), або зі зміщенням осі штовхача в той чи інший бік (з ексцентриситетом, дезаксиальні). Зміщення штовхача дає змогу при однакових інших умовах зменшити габарити механізму та тиск на напрямну.
МАЛЬТІЙСЬКИЙ МЕХАНІЗМ
м
альтійський
хрест — пристрій, що перетворює
безперервний обертовий рух на
переривчастий; тип перетворювального
(відтворювального) механізму. У
мальтійському механізмі палець ведучого
диска, що обертається, входить на деякий
час у радіальний проріз веденого диска
(хреста), повертаючи його на певний кут
(найчастіше 60 або 90°). Після виходу пальця
з прорізу ведучий диск ковзає по зовн.
поверхні веденого і тим самим гальмує
його рух. Мальтійські механізми бувають:
із зовнішнім і внутрішнім зачепленням;
різні за формою, кількістю пальців і
прорізів. Назва — від мальтійського
хреста (емблеми Мальтійського ордену),
схожого на ведений диск. Мальтійський
механізм застосовують у металорізальних
верстатах, кінопроекційних та ін.
апаратах і машинах, де необхідні
періодичні зупинки у русі.
ХРАПОВИЙ МЕХАНІЗМ
Храпові механізми дозволябть у широкому діапазоні змінювати величину періодичних переміщень робочих органів машини. Типи храпових механізмів і галузі їхнього застосування різноманітні.
У храповому механізмі є диск 2 (мал.4) з пазом, в якому закріплюютьвісь 3, яка регулюється за відстанню Х, храповик 6 зі скошеними в один бік зубами, важелі 4 і 8, з " єднані з диском і храповиком шарнірно, і собачка 5, яка вільно сидить на спеціальній осі, закріпленій на важелі 8. Диск і храповик нерухомо закріплені відповідно на осях 1 і 7. при обертанні диска вісь 3 описує коло і переміщує важиль 4, надаючи важелю 8 коливального руху. При цьому в залежності від напрямку коливання а- б собачка ковзає по заокругленій частині зуба храповика і потрапляє в його западину під дією сили тяжіння або спеціальної пружини ; упираючись у зуб, собачка штовхає його вперед. В результаті кожного обертання диска храповик з веденим валом здійснює уривчастий (кроковий) рух (обертання). Розмір кроку може бути малим (через кожен зуб) і великим (через два і більше зубів), що досягається перевстановленням кута коливання а-б важеля 8.
